The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that nonnegative solutions of
either converge to zero, blow up in -norm, or converge to the ground state when , where the latter case is a threshold phenomenon when varies. The proof is based on the fact that any bounded trajectory converges to a stationary solution. The function is typically nonlinear but has a sublinear growth at infinity. We also show that for superlinear it can happen that solutions converge to zero for any , provided is sufficiently small.
We investigate the weak spectral mapping property (WSMP)
,
where A is the generator of a ₀-semigroup in a Banach space X, μ is a measure, and μ̂(A) is defined by the Phillips functional calculus. We consider the special case when X is a Banach algebra and the operators , t ≥ 0, are multipliers.
Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and -maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented...
Download Results (CSV)