The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Two remarks on Lie rings of 2 × 2 matrices over commutative associative rings

Evgenii L. Bashkirov — 2020

Commentationes Mathematicae Universitatis Carolinae

Let C be an associative commutative ring with 1. If a C , then a C denotes the principal ideal generated by a . Let l , m , n be nonzero elements of C such that m n l C . The set of matrices a 11 a 12 a 21 - a 11 , where a 11 l C , a 12 m C , a 21 n C , forms a Lie ring under Lie multiplication and matrix addition. The paper studies properties of these Lie rings.

On groups of similitudes in associative rings

Evgenii L. Bashkirov — 2008

Commentationes Mathematicae Universitatis Carolinae

Let R be an associative ring with 1 and R × the multiplicative group of invertible elements of R . In the paper, subgroups of R × which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.

Page 1

Download Results (CSV)