Uniqueness of rotation invariant norms.
Let and be representations of a topological group G on Banach spaces X and Y, respectively. We investigate the continuity of the linear operators Φ: X → Y with the property that for each t ∈ G in terms of the invariant vectors in Y and the automatic continuity of the invariant linear functionals on X.
Let G be a locally compact abelian group and let X be a translation invariant linear subspace of L¹(G). If G is noncompact, then there is at most one Banach space topology on X that makes translations on X continuous. In fact, the Banach space topology on X is determined just by a single nontrivial translation in the case where the dual group Ĝ is connected. For G compact we show that the problem of determining a Banach space topology on X by considering translation operators on X is closely related...
A linear map T from a Banach algebra A into another B preserves zero products if T(a)T(b) = 0 whenever a,b ∈ A are such that ab = 0. This paper is mainly concerned with the question of whether every continuous linear surjective map T: A → B that preserves zero products is a weighted homomorphism. We show that this is indeed the case for a large class of Banach algebras which includes group algebras. Our method involves continuous bilinear maps ϕ: A × A → X (for some Banach space X) with the property...
Let A be an ultraprime Banach algebra. We prove that each approximately commuting continuous linear (or quadratic) map on A is near an actual commuting continuous linear (resp. quadratic) map on A. Furthermore, we use this analysis to study how close are approximate Lie isomorphisms and approximate Lie derivations to actual Lie isomorphisms and Lie derivations, respectively.
Page 1