Hypothesis testing is a model selection problem for which the solution proposed by the two main statistical streams of thought, frequentists and Bayesians, substantially differ. One may think that this fact might be due to the prior chosen in the Bayesian analysis and that a convenient prior selection may reconcile both approaches. However, the Bayesian robustness viewpoint has shown that, in general, this is not so and hence a profound disagreement between both approaches exists. In this paper...
Testing that some regression coefficients are equal to zero is an important problem in many applications. Homoscedasticity is not necessarily a realistic condition in this setting and, as a consequence, no frequentist test there exist. Approximate tests have been proposed. In this paper a Bayesian analysis of this problem is carried out, from a default Bayesian model choice perspective. Explicit expressions for intrinsic priors are provided, and it is shown that the corresponding Bayes factor is...
In the Bayesian approach, the Bayes factor is the main tool for model selection and hypothesis testing. When prior information is weak, "default" or "automatic" priors, which are typicaIly improper, are commonly used but, unfortunately, the Bayes factor is defined up to a multiplicative constant. In this paper we revise some recent but already popular methodologies, intrinsic and lractional, to deal with improper priors in model selection and hypothesis testing. Special attention is paid to the...
In this paper, the problem of inference with misclassified multinomial data is addressed. Over the last years there has been a significant upsurge of interest in the development of Bayesian methods to make inferences with misclassified data. The wide range of applications for several sampling schemes and the importance of including initial information make Bayesian analysis an essential tool to be used in this context. A review of the existing literature followed by a methodological discussion is...
Download Results (CSV)