Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations
We study Fourier integral operators of Hörmander’s type acting on the spaces , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on if the mapping is constant on the fibres, of codimension r, of an affine...