Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola — 2010

Studia Mathematica

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r, of an affine...

Page 1

Download Results (CSV)