On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds

Fabio Nicola[1]

  • [1] Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi, 24 10129 Torino, Italy

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 4, page 587-600
  • ISSN: 0391-173X

Abstract

top
Given an embeddable C R manifold M and a non-characteristic hypersurface S M we present a necessary condition for the tangential Cauchy-Riemann operator ¯ M on M to be locally solvable near a point x 0 S in one of the sidesdetermined by S .

How to cite

top

Nicola, Fabio. "On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 587-600. <http://eudml.org/doc/84572>.

@article{Nicola2005,
abstract = {Given an embeddable $CR$ manifold $M$ and a non-characteristic hypersurface $S\subset M$ we present a necessary condition for the tangential Cauchy-Riemann operator $\overline\{\partial \}_M$ on $M$ to be locally solvable near a point $x_0\in S$in one of the sidesdetermined by $S$.},
affiliation = {Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi, 24 10129 Torino, Italy},
author = {Nicola, Fabio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {587-600},
publisher = {Scuola Normale Superiore, Pisa},
title = {On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds},
url = {http://eudml.org/doc/84572},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Nicola, Fabio
TI - On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 587
EP - 600
AB - Given an embeddable $CR$ manifold $M$ and a non-characteristic hypersurface $S\subset M$ we present a necessary condition for the tangential Cauchy-Riemann operator $\overline{\partial }_M$ on $M$ to be locally solvable near a point $x_0\in S$in one of the sidesdetermined by $S$.
LA - eng
UR - http://eudml.org/doc/84572
ER -

References

top
  1. [1] A. Andreotti, G. Fredricks and M. Nacinovich, On the absence of the Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981), 365–404. Zbl0482.35061MR634855
  2. [2] A. Andreotti and C. D. Hill, E.E. Levi convexity and the Hans Lewy problem, I and II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1972), 325–363, 747–806. Zbl0283.32013
  3. [3] P. D. Cordaro and J. Hounie, Local solvability for a class of differential complexes, Acta Math. 187 (2001), 191–212. Zbl1004.58012MR1879848
  4. [4] P.D. Cordaro and F. Treves, “Hyperfunctions on Hypo-Analytic Manifolds”, Annals of Mathematics Studies, Vol. 136. Princeton University Press, Princeton, NJ, 1994. Zbl0817.32001MR1311923
  5. [5] S.-C. Chen and M.-C. Shaw, “Partial Differential Equations in Several Complex Variables”, Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc., International Press, Providence, RI, 2001. Zbl0963.32001MR1800297
  6. [6] G. B. Folland and E.M. Stein, Estimates for the ¯ b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. Zbl0293.35012MR367477
  7. [7] C. D. Hill and M. Nacinovich, On the failure of the Poincaré lemma for ¯ M II, preprint. Zbl1092.32503MR2217688
  8. [8] L. Hörmander, Differential operators of principal type, Math. Ann. 140 (1960), 124–146. Zbl0090.08101MR130574
  9. [9] M. Kashiwara and P. Schapira, A vanishing theorem for a class of systems with simple characteristics, Invent. Math. 82 (1985), 579–592. Zbl0626.58028MR811552
  10. [10] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. 66 (1957), 155–158. Zbl0078.08104MR88629
  11. [11] R. B. Melrose, “Differential Analysis on Manifolds with Corners”, book in preparation, available at www.math.mit.edu/ rbm/book.html. 
  12. [12] V. Michel, Sur la régularité C du ¯ au bord d’un domaine de n dont la forme de Levi a exactement s valeus propres négatives, Math. Ann. 295 (1993), 135–161. Zbl0788.32010MR1198845
  13. [13] M. Nacinovich, Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Ann. 268 (1984), 449–471. Zbl0574.32045MR753407
  14. [14] M. Nacinovich, On strict Levi q -convexity and q -concavity on domains with piecewise smooth boundaries, Math. Ann. 281 (1988), 459–482. Zbl0628.32021MR954153
  15. [15] M. M. Peloso and F. Ricci, Tangential Cauchy-Riemann equations on quadratic CR manifolds, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 13 (2002), 125–134. Zbl1225.32037MR1984107
  16. [16] F. Treves, “Homotopy Formulas in the Tangential Cauchy-Riemann Complex”, Memoirs, Vol. 87, No. 434, Amer. Math. Soc., Providence, RI, 1990. Zbl0707.35105MR1028234
  17. [17] F. Treves, “Hypo-analytic Strucures: Local Theory”, Princeton University Press, Princeton, 1992. Zbl0787.35003MR1200459
  18. [18] F. Treves, A treasure trove of geometry and analysis: The hyperquadric, Notices Amer. Math. Soc. 47 (2000), 1246–1256. Zbl0986.51038MR1784240

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.