Saturation numbers of books.
For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order...
In [2], Brousek characterizes all triples of graphs, G₁, G₂, G₃, with for some i = 1, 2, or 3, such that all G₁G₂G₃-free graphs contain a hamiltonian cycle. In [6], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁, G₂, G₃, none of which is a , s ≥ 3 such that G₁, G₂, G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In this paper, a characterization will be given of all triples G₁, G₂, G₃ with none being , such that all G₁G₂G₃-free...
In [1], Brousek characterizes all triples of connected graphs, G₁,G₂,G₃, with for some i = 1,2, or 3, such that all G₁G₂ G₃-free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁,G₂,G₃, none of which is a , s ≥ 3 such that G₁G₂G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In [6], a characterization was given of all triples G₁,G₂,G₃ with none being , such that all G₁G₂G₃-free graphs are...
The Chvátal-Erdös theorems imply that if G is a graph of order n ≥ 3 with κ(G) ≥ α(G), then G is hamiltonian, and if κ(G) > α(G), then G is hamiltonian-connected. We generalize these results by replacing the connectivity and independence number conditions with a weaker minimum degree and independence number condition in the presence of sufficient connectivity. More specifically, it is noted that if G is a graph of order n and k ≥ 2 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-k)/(k+1),...
A graph G is H-saturated if H is not a subgraph of G but the addition of any edge from G̅ to G results in a copy of H. The minimum size of an H-saturated graph on n vertices is denoted sat(n,H), while the maximum size is the well studied extremal number, ex(n,H). The saturation spectrum for a graph H is the set of sizes of H saturated graphs between sat(n,H) and ex(n,H). In this paper we completely determine the saturation spectrum of stars and we show the saturation spectrum of paths is continuous...
A collection (1 ≤ t ≤ k) of t disjoint paths, s of them being singletons with |V(L)| = k is called a (k,t,s)-linear forest. A graph G is (k,t,s)-ordered if for every (k,t,s)-linear forest L in G there exists a cycle C in G that contains the paths of L in the designated order as subpaths. If the cycle is also a hamiltonian cycle, then G is said to be (k,t,s)-ordered hamiltonian. We give sharp sum of degree conditions for nonadjacent vertices that imply a graph is (k,t,s)-ordered hamiltonian.
Page 1