Formal Lagrangian operad.
Let be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an -dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology of the algebra of differential operators on a formal neighbourhood of a...
We consider both standard and twisted actions of a (real) Coxeter group on the complement to the complexified reflection hyperplanes by combining the reflections with complex conjugation. We introduce a natural geometric class of special involutions in and give explicit formulae which describe both actions on the total cohomology in terms of these involutions. As a corollary we prove that the corresponding twisted representation is regular only for the symmetric group , the Weyl groups...
Page 1