A Riemann-Roch-Hirzebruch formula for traces of differential operators
Markus Engeli; Giovanni Felder
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 4, page 623-655
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topEngeli, Markus, and Felder, Giovanni. "A Riemann-Roch-Hirzebruch formula for traces of differential operators." Annales scientifiques de l'École Normale Supérieure 41.4 (2008): 623-655. <http://eudml.org/doc/272132>.
@article{Engeli2008,
abstract = {Let $D$ be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an $n$-dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of $D$ as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology $HH^\{2n\}(\mathcal \{D\}_n,\mathcal \{D\}_n^*)$ of the algebra of differential operators on a formal neighbourhood of a point. If $D$ is the identity, the formula reduces to the Riemann-Roch-Hirzebruch formula.},
author = {Engeli, Markus, Felder, Giovanni},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {traces of differential operators; Lefschetz formula; Riemann–Roch–Hirzebruch formula},
language = {eng},
number = {4},
pages = {623-655},
publisher = {Société mathématique de France},
title = {A Riemann-Roch-Hirzebruch formula for traces of differential operators},
url = {http://eudml.org/doc/272132},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Engeli, Markus
AU - Felder, Giovanni
TI - A Riemann-Roch-Hirzebruch formula for traces of differential operators
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 4
SP - 623
EP - 655
AB - Let $D$ be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an $n$-dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of $D$ as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology $HH^{2n}(\mathcal {D}_n,\mathcal {D}_n^*)$ of the algebra of differential operators on a formal neighbourhood of a point. If $D$ is the identity, the formula reduces to the Riemann-Roch-Hirzebruch formula.
LA - eng
KW - traces of differential operators; Lefschetz formula; Riemann–Roch–Hirzebruch formula
UR - http://eudml.org/doc/272132
ER -
References
top- [1] A. A. Beĭlinson & V. V. Schechtman, Determinant bundles and Virasoro algebras, Comm. Math. Phys.118 (1988), 651–701. Zbl0665.17010
- [2] N. Berline, E. Getzler & M. Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften 298, Springer, 1992. Zbl0744.58001
- [3] I. N. Bernšteĭn & B. I. Rosenfelʼd, Homogeneous spaces of infinite-dimensional Lie algebras and the characteristic classes of foliations,, Russian Math. Surveys 28 (1973), 107–142. Zbl0289.57011
- [4] J.-L. Brylinski & E. Getzler, The homology of algebras of pseudodifferential symbols and the noncommutative residue, -Theory 1 (1987), 385–403. Zbl0646.58026
- [5] A. Connes, Noncommutative differential geometry, Publ. Math. I.H.É.S. 62 (1985), 257–360. Zbl0592.46056MR823176
- [6] B. Feĭgin, G. Felder & B. Shoikhet, Hochschild cohomology of the Weyl algebra and traces in deformation quantization, Duke Math. J.127 (2005), 487–517. Zbl1106.53055
- [7] B. Feĭgin, A. Losev & B. Shoikhet, Riemann-Roch-Hirzebruch theorem and Topological Quantum Mechanics, preprint arXiv:math.QA/0401400.
- [8] B. Feĭgin & B. Tsygan, Riemann-Roch theorem and Lie algebra cohomology. I, Rend. Circ. Mat. Palermo Suppl. 21 (1989), 15–52. Zbl0686.14007
- [9] I. M. Gelʼfand, The cohomology of infinite dimensional Lie algebras: some questions of integral geometry, in Actes du Congrès International des Mathématiciens, Nice, 1970, Gauthier-Villars, 1971, 95–111. Zbl0239.58004MR440631
- [10] I. M. Gelʼfand & D. A. Každan, Certain questions of differential geometry and the computation of the cohomologies of the Lie algebras of vector fields, Soviet Math. Dokl.12 (1971), 1367–1370. Zbl0238.58001
- [11] I. M. Gelʼfand, D. A. Každan & D. B. Fuks, Actions of infinite-dimensional Lie algebras, Functional Anal. Appl.6 (1972), 9–13. Zbl0267.18023
- [12] A. Jaffe, A. Lesniewski & K. Osterwalder, Quantum -theory. I. The Chern character, Comm. Math. Phys. 118 (1988), 1–14. Zbl0656.58048
- [13] S. Lefschetz, Introduction to topology, Princeton Mathematical Series, vol. 11, Princeton University Press, 1949. Zbl0041.51801MR31708
- [14] J.-L. Loday, Cyclic homology, 2 éd., Grund. Math. Wiss. 301, Springer, 1998. Zbl0885.18007MR1600246
- [15] V. Lysov, Anticommutativity equations in topological quantum mechanics,, JETP Lett. 76 (2002), 724–727.
- [16] S. MacLane, Homology, 1 éd., Springer, 1967, Die Grundlehren der mathematischen Wissenschaften, Band 114. Zbl0133.26502MR349792
- [17] R. Nest & B. Tsygan, Algebraic index theorem, Comm. Math. Phys.172 (1995), 223–262. Zbl0887.58050
- [18] A. Ramadoss, Some notes on the Feigin–Losev–Shoikhet integral conjecture, preprint, arXiv:math.QA/0612298. Zbl1194.32010MR2438339
- [19] V. V. Schechtman, Riemann-Roch theorem after D. Toledo and Y.-L. Tong, Rend. Circ. Mat. Palermo Suppl.21 (1989), 53–81. Zbl0707.14007MR1009565
- [20] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, 1967. Zbl0171.10402MR225131
- [21] M. Wodzicki, Cyclic homology of differential operators, Duke Math. J.54 (1987), 641–647. Zbl0635.18010MR899408
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.