The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Final forms for a three-dimensional vector field under blowing-up

Felipe Cano — 1987

Annales de l'institut Fourier

We study the final situations which may be obtained for a singular vector field by permissible blowing-ups of the ambient space (in dimension three). These situations are preserved by permissible blowing-ups and its structure is simple from the view-point of the integral branches. Technically, we take a logarithmic approach, by marking in each step the exceptional divisor of the transformation.

Dicritical logarithmic foliations.

Felipe CanoNuria Corral — 2006

Publicacions Matemàtiques

We show the existence of weak logarithmic models for any (dicritical or not) holomorphic foliation F of (C2,0) without saddle-nodes in its desingularization. The models are written in terms of a representative set of separatrices, whose equisingularity types are controlled by the Milnor number of the foliation.

Hypersurfaces intégrales des feuilletages holomorphes

Felipe CanoJean-François Mattei — 1992

Annales de l'institut Fourier

Soit ω un germe en 0 C n de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité ω d ω = 0 et non dicritique, i.e. sur toute surface Z non intégrale de ω , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques ( Γ i , P i ) , intégrales de ω , avec P i Z Sing ω . Alors ω possède un germe d’hypersurface analytique intégrale.

Page 1

Download Results (CSV)