The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Quasiconformal mappings and exponentially integrable functions

Fernando FarroniRaffaella Giova — 2011

Studia Mathematica

We prove that a K-quasiconformal mapping f:ℝ² → ℝ² which maps the unit disk onto itself preserves the space EXP() of exponentially integrable functions over , in the sense that u ∈ EXP() if and only if u f - 1 E X P ( ) . Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate 1 / ( 1 + K l o g K ) ( | | u f - 1 | | E X P ( ) ) / ( | | u | | E X P ( ) ) 1 + K l o g K for every u ∈ EXP(). Similarly, we consider the distance from L in EXP and we prove that if f: Ω → Ω’ is a K-quasiconformal mapping and G ⊂ ⊂ Ω, then 1 / K ( d i s t E X P ( f ( G ) ) ( u f - 1 , L ( f ( G ) ) ) ) / ( d i s t E X P ( f ( G ) ) ( u , L ( G ) ) ) K for every u ∈ EXP(). We also prove that...

Page 1

Download Results (CSV)