Operators with hypercyclic Cesaro means
An operator T on a Banach space ℬ is said to be hypercyclic if there exists a vector x such that the orbit is dense in ℬ. Hypercyclicity is a strong kind of cyclicity which requires that the linear span of the orbit is dense in ℬ. If the arithmetic means of the orbit of x are dense in ℬ then the operator T is said to be Cesàro-hypercyclic. Apparently Cesàro-hypercyclicity is a strong version of hypercyclicity. We prove that an operator is Cesàro-hypercyclic if and only if there exists a vector...