The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let , be Archimedean Riesz spaces and be the ordered vector space of all order bounded operators from into . We define a Lamperti Riesz subspace of to be an ordered vector subspace of such that the elements of preserve disjointness and any pair of operators in has a supremum in that belongs to . It turns out that the lattice operations in any Lamperti Riesz subspace of are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem for Riesz homomorphisms....
Download Results (CSV)