Riesz spaces of order bounded disjointness preserving operators
Let , be Archimedean Riesz spaces and be the ordered vector space of all order bounded operators from into . We define a Lamperti Riesz subspace of to be an ordered vector subspace of such that the elements of preserve disjointness and any pair of operators in has a supremum in that belongs to . It turns out that the lattice operations in any Lamperti Riesz subspace of are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem for Riesz homomorphisms....