Riesz spaces of order bounded disjointness preserving operators

Fethi Ben Amor

Commentationes Mathematicae Universitatis Carolinae (2007)

  • Volume: 48, Issue: 4, page 607-622
  • ISSN: 0010-2628

Abstract

top
Let L , M be Archimedean Riesz spaces and b ( L , M ) be the ordered vector space of all order bounded operators from L into M . We define a Lamperti Riesz subspace of b ( L , M ) to be an ordered vector subspace of b ( L , M ) such that the elements of preserve disjointness and any pair of operators in has a supremum in b ( L , M ) that belongs to . It turns out that the lattice operations in any Lamperti Riesz subspace of b ( L , M ) are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of b ( L , M ) as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of b ( L , M ) is a band of b ( L , M ) , provided M is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of b ( L , M ) . Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces.

How to cite

top

Amor, Fethi Ben. "Riesz spaces of order bounded disjointness preserving operators." Commentationes Mathematicae Universitatis Carolinae 48.4 (2007): 607-622. <http://eudml.org/doc/250200>.

@article{Amor2007,
abstract = {Let $L$, $M$ be Archimedean Riesz spaces and $\mathcal \{L\}_\{b\}(L,M)$ be the ordered vector space of all order bounded operators from $L$ into $M$. We define a Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$ to be an ordered vector subspace $\mathcal \{L\}$ of $\mathcal \{L\}_\{b\}(L,M)$ such that the elements of $\mathcal \{L\}$ preserve disjointness and any pair of operators in $\mathcal \{L\}$ has a supremum in $\mathcal \{L\}_\{b\}(L,M)$ that belongs to $\mathcal \{L\}$. It turns out that the lattice operations in any Lamperti Riesz subspace $\mathcal \{L\}$ of $\mathcal \{L\}_\{b\}(L,M)$ are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$ as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$ is a band of $\mathcal \{L\}_\{b\}(L,M)$, provided $M$ is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$. Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces.},
author = {Amor, Fethi Ben},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {continuous functions spaces; disjointness preserving operator; Lamperti Riesz subspace; order bounded operator; orthomorphism; Radon-Nikod'ym; Riesz space; spaces of continuous functions; disjointness-preserving operator; Lamperti-Riesz subspace},
language = {eng},
number = {4},
pages = {607-622},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Riesz spaces of order bounded disjointness preserving operators},
url = {http://eudml.org/doc/250200},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Amor, Fethi Ben
TI - Riesz spaces of order bounded disjointness preserving operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 4
SP - 607
EP - 622
AB - Let $L$, $M$ be Archimedean Riesz spaces and $\mathcal {L}_{b}(L,M)$ be the ordered vector space of all order bounded operators from $L$ into $M$. We define a Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$ to be an ordered vector subspace $\mathcal {L}$ of $\mathcal {L}_{b}(L,M)$ such that the elements of $\mathcal {L}$ preserve disjointness and any pair of operators in $\mathcal {L}$ has a supremum in $\mathcal {L}_{b}(L,M)$ that belongs to $\mathcal {L}$. It turns out that the lattice operations in any Lamperti Riesz subspace $\mathcal {L}$ of $\mathcal {L}_{b}(L,M)$ are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$ as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$ is a band of $\mathcal {L}_{b}(L,M)$, provided $M$ is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$. Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces.
LA - eng
KW - continuous functions spaces; disjointness preserving operator; Lamperti Riesz subspace; order bounded operator; orthomorphism; Radon-Nikod'ym; Riesz space; spaces of continuous functions; disjointness-preserving operator; Lamperti-Riesz subspace
UR - http://eudml.org/doc/250200
ER -

References

top
  1. Abramovich Y.A., Aliprantis C.D., An Invitation to Operator Theory, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. Zbl1022.47001MR1921782
  2. Abramovich Y.A., Aliprantis C.D., Problems in Operators Theory, Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, 2002. MR1921783
  3. Abramovich Y.A., Kitover A.K., Inverses of disjointness preserving operators, Memoirs Amer. Math. Soc. 143 (2000), 679. (2000) Zbl0974.47032MR1639940
  4. Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
  5. Arendt W., Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32 (1983), 199-215. (1983) Zbl0488.47016MR0690185
  6. Ben Amor F., Boulabiar K., On the modulus of disjointness preserving operators on complex vector lattices, Algebra Universalis 54 (2005), 185-193. (2005) Zbl1107.47026MR2217635
  7. Ben Amor F., Boulabiar K., Maximal ideals of disjointness preserving operators, J. Math. Anal. Appl. 322 (2006), 599-609. (2006) MR2250601
  8. Bernau S., Orthomorphisms of Archimedean vector lattices, Math. Proc. Cambridge Philos. Soc. 89 (1981), 119-128. (1981) Zbl0463.46002MR0591978
  9. Bigard A., Keimel K., Wolfenstein S., Groupes et anneaux réticulés, Lectures Notes in Mathematics, 608, Springer, Berlin-Heidelberg-New York, 1977. Zbl0384.06022MR0552653
  10. Bigard A., Keimel K., Sur les endomorphismes conservants les polaires d'un groupe réticulé Archimédien, Bull. Soc. Math. France 97 (1969), 381-398. (1969) MR0262137
  11. Conrad P.F., Diem J.E., The Ring of polar preserving endomorphisms of an abelian lattice-ordered group, Illinois J. Math. 15 (1971), 222-240. (1971) Zbl0213.04002MR0285462
  12. Gillman L., Jerison M., Rings of Continuous Functions, Springer, Berlin-Heidelberg-New York, 1976. Zbl0327.46040MR0407579
  13. Huijsmans C.B., Luxemburg W.A.J., An alternative proof of a Radon-Nikodým theorem for lattice homomorphisms, Acta. Appl. Math. 27 (1992), 67-71. (1992) Zbl0807.47023MR1184878
  14. Huijsmans C.B., de Pagter B., Disjointness preserving and diffuse operators, Compositio Math. 79 (1991), 351-374. (1991) Zbl0757.47023MR1121143
  15. Luxemburg W.A.J., Some aspects of the theory of Riesz spaces, Lecture Notes in Mathematics, 4, University of Arkansas, Fayetteville, 1979. Zbl0431.46003MR0568706
  16. Luxemburg W.A.J., Schep A.R., A Radon-Nikodým type theorem for positive operators and a dual, Nederl. Akad. Wetensch. Indag. Math. 40 (1978), 357-375. (1978) Zbl0389.47018MR0507829
  17. Luxemburg W.A.J., Zaanen A.C., Riesz Spaces I, North-Holland, Amsterdam, 1971. 
  18. Meyer M., Le stabilateur d'un espace vectoriel réticulé, C.R. Acad. Sci. Paris, Serie I 283 (1976), 249-250. (1976) MR0433191
  19. Meyer-Nieberg P., Banach Lattices, Springer, Berlin-Heidelberg-New York, 1991. Zbl0743.46015MR1128093
  20. de Pagter B., f -algebras and orthomorphisms, Thesis, Leiden, 1981. 
  21. de Pagter B., A note on disjointness preserving operators, Proc. Amer. Math. Soc. 90 (1984), 543-549. (1984) Zbl0541.47032MR0733403
  22. de Pagter B., Schep A.R., Band decomposition for disjointness preserving operators, Positivity 4 (2000), 259-288. (2000) Zbl0991.47022MR1797129
  23. van Putten B., Disjunctive linear operators and partial multiplication in Riesz spaces, Thesis, Wageningen, 1980. 
  24. Wójtowicz M., On a weak Freudenthal spectral theorem, Comment. Math. Univ. Carolin. 33 (1992), 631-643. (1992) MR1240185
  25. Zaanen A.C., Riesz Spaces II, North-Holland, Amsterdam, 1983. Zbl0519.46001MR0704021
  26. Zaanen A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin-Heidelberg-New York, 1997. Zbl0878.47022MR1631533

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.