Riesz spaces of order bounded disjointness preserving operators
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 4, page 607-622
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAmor, Fethi Ben. "Riesz spaces of order bounded disjointness preserving operators." Commentationes Mathematicae Universitatis Carolinae 48.4 (2007): 607-622. <http://eudml.org/doc/250200>.
@article{Amor2007,
abstract = {Let $L$, $M$ be Archimedean Riesz spaces and $\mathcal \{L\}_\{b\}(L,M)$ be the ordered vector space of all order bounded operators from $L$ into $M$. We define a Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$ to be an ordered vector subspace $\mathcal \{L\}$ of $\mathcal \{L\}_\{b\}(L,M)$ such that the elements of $\mathcal \{L\}$ preserve disjointness and any pair of operators in $\mathcal \{L\}$ has a supremum in $\mathcal \{L\}_\{b\}(L,M)$ that belongs to $\mathcal \{L\}$. It turns out that the lattice operations in any Lamperti Riesz subspace $\mathcal \{L\}$ of $\mathcal \{L\}_\{b\}(L,M)$ are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$ as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$ is a band of $\mathcal \{L\}_\{b\}(L,M)$, provided $M$ is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of $\mathcal \{L\}_\{b\}(L,M)$. Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces.},
author = {Amor, Fethi Ben},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {continuous functions spaces; disjointness preserving operator; Lamperti Riesz subspace; order bounded operator; orthomorphism; Radon-Nikod'ym; Riesz space; spaces of continuous functions; disjointness-preserving operator; Lamperti-Riesz subspace},
language = {eng},
number = {4},
pages = {607-622},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Riesz spaces of order bounded disjointness preserving operators},
url = {http://eudml.org/doc/250200},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Amor, Fethi Ben
TI - Riesz spaces of order bounded disjointness preserving operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 4
SP - 607
EP - 622
AB - Let $L$, $M$ be Archimedean Riesz spaces and $\mathcal {L}_{b}(L,M)$ be the ordered vector space of all order bounded operators from $L$ into $M$. We define a Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$ to be an ordered vector subspace $\mathcal {L}$ of $\mathcal {L}_{b}(L,M)$ such that the elements of $\mathcal {L}$ preserve disjointness and any pair of operators in $\mathcal {L}$ has a supremum in $\mathcal {L}_{b}(L,M)$ that belongs to $\mathcal {L}$. It turns out that the lattice operations in any Lamperti Riesz subspace $\mathcal {L}$ of $\mathcal {L}_{b}(L,M)$ are given pointwise, which leads to a generalization of the classic Radon-Nikod’ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$ as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$ is a band of $\mathcal {L}_{b}(L,M)$, provided $M$ is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of $\mathcal {L}_{b}(L,M)$. Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces.
LA - eng
KW - continuous functions spaces; disjointness preserving operator; Lamperti Riesz subspace; order bounded operator; orthomorphism; Radon-Nikod'ym; Riesz space; spaces of continuous functions; disjointness-preserving operator; Lamperti-Riesz subspace
UR - http://eudml.org/doc/250200
ER -
References
top- Abramovich Y.A., Aliprantis C.D., An Invitation to Operator Theory, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. Zbl1022.47001MR1921782
- Abramovich Y.A., Aliprantis C.D., Problems in Operators Theory, Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, 2002. MR1921783
- Abramovich Y.A., Kitover A.K., Inverses of disjointness preserving operators, Memoirs Amer. Math. Soc. 143 (2000), 679. (2000) Zbl0974.47032MR1639940
- Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
- Arendt W., Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32 (1983), 199-215. (1983) Zbl0488.47016MR0690185
- Ben Amor F., Boulabiar K., On the modulus of disjointness preserving operators on complex vector lattices, Algebra Universalis 54 (2005), 185-193. (2005) Zbl1107.47026MR2217635
- Ben Amor F., Boulabiar K., Maximal ideals of disjointness preserving operators, J. Math. Anal. Appl. 322 (2006), 599-609. (2006) MR2250601
- Bernau S., Orthomorphisms of Archimedean vector lattices, Math. Proc. Cambridge Philos. Soc. 89 (1981), 119-128. (1981) Zbl0463.46002MR0591978
- Bigard A., Keimel K., Wolfenstein S., Groupes et anneaux réticulés, Lectures Notes in Mathematics, 608, Springer, Berlin-Heidelberg-New York, 1977. Zbl0384.06022MR0552653
- Bigard A., Keimel K., Sur les endomorphismes conservants les polaires d'un groupe réticulé Archimédien, Bull. Soc. Math. France 97 (1969), 381-398. (1969) MR0262137
- Conrad P.F., Diem J.E., The Ring of polar preserving endomorphisms of an abelian lattice-ordered group, Illinois J. Math. 15 (1971), 222-240. (1971) Zbl0213.04002MR0285462
- Gillman L., Jerison M., Rings of Continuous Functions, Springer, Berlin-Heidelberg-New York, 1976. Zbl0327.46040MR0407579
- Huijsmans C.B., Luxemburg W.A.J., An alternative proof of a Radon-Nikodým theorem for lattice homomorphisms, Acta. Appl. Math. 27 (1992), 67-71. (1992) Zbl0807.47023MR1184878
- Huijsmans C.B., de Pagter B., Disjointness preserving and diffuse operators, Compositio Math. 79 (1991), 351-374. (1991) Zbl0757.47023MR1121143
- Luxemburg W.A.J., Some aspects of the theory of Riesz spaces, Lecture Notes in Mathematics, 4, University of Arkansas, Fayetteville, 1979. Zbl0431.46003MR0568706
- Luxemburg W.A.J., Schep A.R., A Radon-Nikodým type theorem for positive operators and a dual, Nederl. Akad. Wetensch. Indag. Math. 40 (1978), 357-375. (1978) Zbl0389.47018MR0507829
- Luxemburg W.A.J., Zaanen A.C., Riesz Spaces I, North-Holland, Amsterdam, 1971.
- Meyer M., Le stabilateur d'un espace vectoriel réticulé, C.R. Acad. Sci. Paris, Serie I 283 (1976), 249-250. (1976) MR0433191
- Meyer-Nieberg P., Banach Lattices, Springer, Berlin-Heidelberg-New York, 1991. Zbl0743.46015MR1128093
- de Pagter B., -algebras and orthomorphisms, Thesis, Leiden, 1981.
- de Pagter B., A note on disjointness preserving operators, Proc. Amer. Math. Soc. 90 (1984), 543-549. (1984) Zbl0541.47032MR0733403
- de Pagter B., Schep A.R., Band decomposition for disjointness preserving operators, Positivity 4 (2000), 259-288. (2000) Zbl0991.47022MR1797129
- van Putten B., Disjunctive linear operators and partial multiplication in Riesz spaces, Thesis, Wageningen, 1980.
- Wójtowicz M., On a weak Freudenthal spectral theorem, Comment. Math. Univ. Carolin. 33 (1992), 631-643. (1992) MR1240185
- Zaanen A.C., Riesz Spaces II, North-Holland, Amsterdam, 1983. Zbl0519.46001MR0704021
- Zaanen A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin-Heidelberg-New York, 1997. Zbl0878.47022MR1631533
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.