The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given a Banach space X and a subspace Y, the pair (X,Y) is said to have the approximation property (AP) provided there is a net of finite rank bounded linear operators on X all of which leave the subspace Y invariant such that the net converges uniformly on compact subsets of X to the identity operator. In particular, if the pair (X,Y) has the AP then X, Y, and the quotient space X/Y have the classical Grothendieck AP. The main result is an easy to apply dual formulation of this property. Applications...
Download Results (CSV)