The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

An application of the induction method of V. Pták to the study of regula falsi

Florian-Alexandru Potra — 1981

Aplikace matematiky

In this paper we introduce the notion of " p -dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form X n + 1 = F ( x n - p + 1 , X n - p + 2 , ... , x n ) , n = 0 , 1 , 2 , ... . As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.

Page 1

Download Results (CSV)