Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction
We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya-Watson kernel estimator based on the dependent variable (ii) estimators obtained under an assumption of local parametric model where explanatory...