If is a commutative ring with identity and is defined by letting mean or , then is a partially ordered ring. Necessary and sufficient conditions on are given for to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings of integers mod for . In particular, if is reduced, then is a lattice iff is a weak Baer ring, and is a distributive lattice iff is a Boolean ring, , , or a four element field.
In 1950 in volume 1 of Proc. Amer. Math. Soc., B. Brown and N. McCoy showed that every (not necessarily commutative) ring has an ideal consisting of elements for which there is an such that , and maximal with respect to this property. Considering only the case when is commutative and has an identity element, it is often not easy to determine when is not just the zero ideal. We determine when this happens in a number of cases: Namely when at least one of or has a von Neumann inverse,...
A lattice-ordered ring is called an if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those -rings such that is contained in an -ring with an identity element that is a strong order unit for some nil -ideal of . In particular, if denotes the set of nilpotent elements of the -ring , then is an OIRI-ring if and only if is contained in an -ring with an identity element that is a strong order unit.
Download Results (CSV)