The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part

Patrick BonckaertFreek Verstringe — 2012

Annales de l’institut Fourier

We explore the convergence/divergence of the normal form for a singularity of a vector field on n with nilpotent linear part. We show that a Gevrey- α vector field X with a nilpotent linear part can be reduced to a normal form of Gevrey- 1 + α type with the use of a Gevrey- 1 + α transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.

Page 1

Download Results (CSV)