Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part

Patrick Bonckaert[1]; Freek Verstringe[1]

  • [1] Universiteit Hasselt Agoralaan Gebouw D 3590 Diepenbeek (Belgium)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 6, page 2211-2225
  • ISSN: 0373-0956

Abstract

top
We explore the convergence/divergence of the normal form for a singularity of a vector field on n with nilpotent linear part. We show that a Gevrey- α vector field X with a nilpotent linear part can be reduced to a normal form of Gevrey- 1 + α type with the use of a Gevrey- 1 + α transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.

How to cite

top

Bonckaert, Patrick, and Verstringe, Freek. "Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part." Annales de l’institut Fourier 62.6 (2012): 2211-2225. <http://eudml.org/doc/251148>.

@article{Bonckaert2012,
abstract = {We explore the convergence/divergence of the normal form for a singularity of a vector field on $\mathbb\{C\}^n$ with nilpotent linear part. We show that a Gevrey-$\alpha $ vector field $X$ with a nilpotent linear part can be reduced to a normal form of Gevrey-$1+\alpha $ type with the use of a Gevrey-$1+\alpha $ transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.},
affiliation = {Universiteit Hasselt Agoralaan Gebouw D 3590 Diepenbeek (Belgium); Universiteit Hasselt Agoralaan Gebouw D 3590 Diepenbeek (Belgium)},
author = {Bonckaert, Patrick, Verstringe, Freek},
journal = {Annales de l’institut Fourier},
keywords = {normal forms; nilpotent linear part; representation theory; Gevrey normalization},
language = {eng},
number = {6},
pages = {2211-2225},
publisher = {Association des Annales de l’institut Fourier},
title = {Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part},
url = {http://eudml.org/doc/251148},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Bonckaert, Patrick
AU - Verstringe, Freek
TI - Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2211
EP - 2225
AB - We explore the convergence/divergence of the normal form for a singularity of a vector field on $\mathbb{C}^n$ with nilpotent linear part. We show that a Gevrey-$\alpha $ vector field $X$ with a nilpotent linear part can be reduced to a normal form of Gevrey-$1+\alpha $ type with the use of a Gevrey-$1+\alpha $ transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.
LA - eng
KW - normal forms; nilpotent linear part; representation theory; Gevrey normalization
UR - http://eudml.org/doc/251148
ER -

References

top
  1. Mireille Canalis-Durand, Reinhard Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), 493-513 Zbl1169.34339MR2116814
  2. Richard Cushman, Jan A. Sanders, Nilpotent normal forms and representation theory of sl ( 2 , R ) , Multiparameter bifurcation theory (Arcata, Calif., 1985) 56 (1986), 31-51, Amer. Math. Soc., Providence, RI Zbl0604.58005MR855083
  3. C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D 29 (1987), 95-127 Zbl0633.58020MR923885
  4. James E. Humphreys, Introduction to Lie algebras and representation theory, (1972), Springer-Verlag, New York Zbl0447.17001MR323842
  5. Gérard Iooss, Eric Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations 212 (2005), 1-61 Zbl1072.34039MR2130546
  6. Eric Lombardi, Laurent Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation. (Formes normales des perturbations analytiques des champs de vecteurs quasi-homogènes: rigidité, ensembles d’invariants analytiques et approximation exponentiellement petite.), Ann. Sci. Éc. Norm. Supér. (2010), 659-718 Zbl1202.37071MR2722512
  7. Frank Loray, A preparation theorem for codimension-one foliations, Ann. of Math. (2) 163 (2006), 709-722 Zbl1103.32018MR2199230
  8. David Mumo Malonza, Stanley decomposition for coupled Takens-Bogdanov systems, J. Nonlinear Math. Phys. 17 (2010), 69-85 Zbl1194.34066MR2647461
  9. James Murdock, Normal forms and unfoldings for local dynamical systems, (2003), Springer-Verlag, New York Zbl1014.37001MR1941477
  10. Ewa Stróżyna, Henryk Żoładek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations 179 (2002), 479-537 Zbl1005.34034MR1885678
  11. Ewa Stróżyna, Henryk Żoładek, Multidimensional formal Takens normal form, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 927-934 Zbl1190.34046MR2484141
  12. Floris Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. (1974), 47-100 Zbl0279.58009MR339292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.