Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the L 1 -convergence of Fourier series

S. Fridli — 1997

Studia Mathematica

Since the trigonometric Fourier series of an integrable function does not necessarily converge to the function in the mean, several additional conditions have been devised to guarantee the convergence. For instance, sufficient conditions can be constructed by using the Fourier coefficients or the integral modulus of the corresponding function. In this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients and prove that it implies the convergence of the Fourier series...

An inverse Sidon type inequality

S. Fridli — 1993

Studia Mathematica

Sidon proved the inequality named after him in 1939. It is an upper estimate for the integral norm of a linear combination of trigonometric Dirichlet kernels expressed in terms of the coefficients. Since the estimate has many applications for instance in L 1 convergence problems and summation methods with respect to trigonometric series, newer and newer improvements of the original inequality has been proved by several authors. Most of them are invariant with respect to the rearrangement of the coefficients....

Page 1

Download Results (CSV)