Some properties of prime near-rings with -derivation.
Let be a -prime left near-ring with multiplicative center , a -derivation on is defined to be an additive endomorphism satisfying the product rule for all , where and are automorphisms of . A nonempty subset of will be called a semigroup right ideal (resp. semigroup left ideal) if (resp. ) and if is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let be a -derivation on such...
Page 1