Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Semilattices with sectional mappings

Ivan ChajdaGünther Eigenthaler — 2007

Discussiones Mathematicae - General Algebra and Applications

We consider join-semilattices with 1 where for every element p a mapping on the interval [p,1] is defined; these mappings are called sectional mappings and such structures are called semilattices with sectional mappings. We assign to every semilattice with sectional mappings a binary operation which enables us to classify the cases where the sectional mappings are involutions and / or antitone mappings. The paper generalizes results of [3] and [4], and there are also some connections to [1].

Two constructions of De Morgan algebras and De Morgan quasirings

Ivan ChajdaGünther Eigenthaler — 2009

Discussiones Mathematicae - General Algebra and Applications

De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).

Balanced congruences

Ivan ChajdaGünther Eigenthaler — 2001

Discussiones Mathematicae - General Algebra and Applications

Let V be a variety with two distinct nullary operations 0 and 1. An algebra 𝔄 ∈ V is called balanced if for each Φ,Ψ ∈ Con(𝔄), we have [0]Φ = [0]Ψ if and only if [1]Φ = [1]Ψ. The variety V is called balanced if every 𝔄 ∈ V is balanced. In this paper, balanced varieties are characterized by a Mal'cev condition (Theorem 3). Furthermore, some special results are given for varieties of bounded lattices.

Some modifications of congruence permutability and dually congruence regular varietie

Ivan ChajdaGünther Eigenthaler — 2001

Discussiones Mathematicae - General Algebra and Applications

It is well known that every congruence regular variety is n-permutable (in the sense of [9]) for some n ≥ 2. For the explicit proof see e.g. [2]. The connections between this n and Mal'cev type characterizations of congruence regularity were studied by G.D. Barbour and J.G. Raftery [1]. The concept of local congruence regularity was introduced in [3]. A common generalization of congruence regularity and local congruence regularity was given in [6] under the name "dual congruence regularity with...

Page 1

Download Results (CSV)