On the ψ₂-behaviour of linear functionals on isotropic convex bodies
The slicing problem can be reduced to the study of isotropic convex bodies K with , where is the isotropic constant. We study the ψ₂-behaviour of linear functionals on this class of bodies. It is proved that for all θ in a subset U of with measure σ(U) ≥ 1 - exp(-c√n). However, there exist isotropic convex bodies K with uniformly bounded geometric distance from the Euclidean ball, such that . In a different direction, we show that good average ψ₂-behaviour of linear functionals on an isotropic...