In this paper we bring together the different known ways of establishing the continuity of the integral over a uniformly integrable set of functions endowed with the topology of pointwise convergence. We use these techniques to study Pettis integrability, as well as compactness in C(K) spaces endowed with the topology of pointwise convergence on a dense subset D in K.
Let X be a Banach space, a norming set and (X,B) the topology on X of pointwise convergence on B. We study the following question: given two (non-negative, countably additive and finite) measures μ₁ and μ₂ on Baire(X,w) which coincide on Baire(X,(X,B)), does it follow that μ₁ = μ₂? It turns out that this is not true in general, although the answer is affirmative provided that both μ₁ and μ₂ are convexly τ-additive (e.g. when X has the Pettis Integral Property). For a Banach space Y not containing...
Let K be a compact Hausdorff space, the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and the topology in C(K) of pointwise convergence on D. It is proved that when is Lindelöf the -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and is Lindelöf, then K is metrizable if, and only if, there is a countable and dense...
Download Results (CSV)