Fragmentability and compactness in C(K)-spaces

B. Cascales; G. Manjabacas; G. Vera

Studia Mathematica (1998)

  • Volume: 131, Issue: 1, page 73-87
  • ISSN: 0039-3223

Abstract

top
Let K be a compact Hausdorff space, C p ( K ) the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and t p ( D ) the topology in C(K) of pointwise convergence on D. It is proved that when C p ( K ) is Lindelöf the t p ( D ) -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and C p ( K ) is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that ( C ( K ) , t p ( D ) ) is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, C p ( K ) is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex t p ( D ) -compact subsets of C(K) have the weak Radon-Nikodym property.

How to cite

top

Cascales, B., Manjabacas, G., and Vera, G.. "Fragmentability and compactness in C(K)-spaces." Studia Mathematica 131.1 (1998): 73-87. <http://eudml.org/doc/216564>.

@article{Cascales1998,
abstract = {Let K be a compact Hausdorff space, $C_p(K)$ the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and $t_p(D)$ the topology in C(K) of pointwise convergence on D. It is proved that when $C_p(K)$ is Lindelöf the $t_p(D)$-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and $C_p(K)$ is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that $(C(K),t_p(D))$ is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, $C_p(K)$ is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex $t_p(D)$-compact subsets of C(K) have the weak Radon-Nikodym property.},
author = {Cascales, B., Manjabacas, G., Vera, G.},
journal = {Studia Mathematica},
keywords = {pointwise compactness; Radon-Nikodym compact spaces; fragmentability; pointwise convergence topology; Lindelöf; Radon-Nikodým compact space},
language = {eng},
number = {1},
pages = {73-87},
title = {Fragmentability and compactness in C(K)-spaces},
url = {http://eudml.org/doc/216564},
volume = {131},
year = {1998},
}

TY - JOUR
AU - Cascales, B.
AU - Manjabacas, G.
AU - Vera, G.
TI - Fragmentability and compactness in C(K)-spaces
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 1
SP - 73
EP - 87
AB - Let K be a compact Hausdorff space, $C_p(K)$ the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and $t_p(D)$ the topology in C(K) of pointwise convergence on D. It is proved that when $C_p(K)$ is Lindelöf the $t_p(D)$-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and $C_p(K)$ is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that $(C(K),t_p(D))$ is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, $C_p(K)$ is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex $t_p(D)$-compact subsets of C(K) have the weak Radon-Nikodym property.
LA - eng
KW - pointwise compactness; Radon-Nikodym compact spaces; fragmentability; pointwise convergence topology; Lindelöf; Radon-Nikodým compact space
UR - http://eudml.org/doc/216564
ER -

References

top
  1. [1] J. Aarts and D. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974). Zbl0296.54027
  2. [2] A. Alexiewicz and W. Orlicz, Sur la continuité et classification de Baire des fonctions abstraites, Fund. Math. 35 (1948), 105-126. 
  3. [3] K. Alster and R. Pol, On function spaces of compact subspaces of Σ-products of the real line, ibid. 107 (1980), 135-143. Zbl0432.54013
  4. [4] A. V. Arkhangel’skiĭ, A survey of C p -theory, Questions Answers Gen. Topology 5 (1987), 1-109 (special issue). 
  5. [5] A. V. Arkhangel’skiĭ, C p -theory, in: M. Hušek and J. van Mill (eds.), Recent Progress in General Topology (Prague, 1991), North-Holland, 1992, 1-56. 
  6. [6] A. V. Arkhangel'skiĭ and V. I. Ponomarev, Fundamentals of General Topology, Reidel, 1984. 
  7. [7] J. Bourgain, D. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886. Zbl0413.54016
  8. [8] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, 1983. Zbl0512.46017
  9. [9] A. Bouziad, Notes sur la propriété de Namioka, Trans. Amer. Math. Soc. 344 (1994), 873-883. 
  10. [10] A. Bouziad, Every Čech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124 (1996), 953-959. Zbl0857.22001
  11. [11] B. Cascales, G. Manjabacas and G. Vera, A Krein-Smulian type result in Banach spaces, Quart. J. Math. Oxford 48 (1997), 161-167. Zbl0886.46014
  12. [12] B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl. 182 (1994), 41-68. Zbl0808.46021
  13. [13] G. A. Edgar, Measurability in a Banach space I, Indiana Univ. Math. J. 26 (1977), 663-677. Zbl0361.46017
  14. [14] R. Engelking, General Topology, PWN-Polish Sci. Publ., 1977. 
  15. [15] G. Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), 293-306. 
  16. [16] G. Godefroy et M. Talagrand, Espaces de Banach représentables, Israel J. Math. 41 (1982), 321-330. Zbl0498.46016
  17. [17] R. Haydon, On Banach spaces which contain 1 ( τ ) and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324. Zbl0365.46020
  18. [18] J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets, Collect. Math. 41 (1990), 133-163. Zbl0764.46015
  19. [19] J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. 66 (1993), 651-672. Zbl0793.54026
  20. [20] J. E. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math. 155 (1985), 41-79. Zbl0588.54020
  21. [21] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss. 208, Springer, Berlin, 1974. Zbl0285.46024
  22. [22] W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. 20 (1970), 507-524. Zbl0199.37802
  23. [23] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531. Zbl0294.54010
  24. [24] I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1989), 258-281. Zbl0654.46017
  25. [25] H. P. Rosenthal, A characterization of Banach spaces containing 1 , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. Zbl0297.46013
  26. [26] C. Stegall, Functions of the first Baire class, Proc. Amer. Math. Soc. 111 (1991), 981-991. 
  27. [27] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438. Zbl0393.46019
  28. [28] M. Talagrand, Sur les mesures vectorielles définies par une application Pettis-intégrable, Bull. Soc. Math. France 108 (1980), 475-483. Zbl0459.46029
  29. [29] M. Talagrand, Sur les espaces de Banach contenant 1 ( τ ) , Israel J. Math. 40 (1981), 324-330. 
  30. [30] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984). 
  31. [31] F. Topsoe and J. Hoffmann-Jorgensen, Analytic sets, chapter in: Analytic Spaces and Their Applications (Part 3), Academic Press, 1980, 317-398. 
  32. [32] S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228. 
  33. [33] G. Vera, Pointwise compactness and continuity of the integral, Rev. Mat. Univ. Complut. Madrid 9 (1996), 221-245 (special issue). Zbl0873.28005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.