Fragmentability and compactness in C(K)-spaces
B. Cascales; G. Manjabacas; G. Vera
Studia Mathematica (1998)
- Volume: 131, Issue: 1, page 73-87
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCascales, B., Manjabacas, G., and Vera, G.. "Fragmentability and compactness in C(K)-spaces." Studia Mathematica 131.1 (1998): 73-87. <http://eudml.org/doc/216564>.
@article{Cascales1998,
abstract = {Let K be a compact Hausdorff space, $C_p(K)$ the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and $t_p(D)$ the topology in C(K) of pointwise convergence on D. It is proved that when $C_p(K)$ is Lindelöf the $t_p(D)$-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and $C_p(K)$ is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that $(C(K),t_p(D))$ is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, $C_p(K)$ is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex $t_p(D)$-compact subsets of C(K) have the weak Radon-Nikodym property.},
author = {Cascales, B., Manjabacas, G., Vera, G.},
journal = {Studia Mathematica},
keywords = {pointwise compactness; Radon-Nikodym compact spaces; fragmentability; pointwise convergence topology; Lindelöf; Radon-Nikodým compact space},
language = {eng},
number = {1},
pages = {73-87},
title = {Fragmentability and compactness in C(K)-spaces},
url = {http://eudml.org/doc/216564},
volume = {131},
year = {1998},
}
TY - JOUR
AU - Cascales, B.
AU - Manjabacas, G.
AU - Vera, G.
TI - Fragmentability and compactness in C(K)-spaces
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 1
SP - 73
EP - 87
AB - Let K be a compact Hausdorff space, $C_p(K)$ the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and $t_p(D)$ the topology in C(K) of pointwise convergence on D. It is proved that when $C_p(K)$ is Lindelöf the $t_p(D)$-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and $C_p(K)$ is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that $(C(K),t_p(D))$ is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, $C_p(K)$ is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex $t_p(D)$-compact subsets of C(K) have the weak Radon-Nikodym property.
LA - eng
KW - pointwise compactness; Radon-Nikodym compact spaces; fragmentability; pointwise convergence topology; Lindelöf; Radon-Nikodým compact space
UR - http://eudml.org/doc/216564
ER -
References
top- [1] J. Aarts and D. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974). Zbl0296.54027
- [2] A. Alexiewicz and W. Orlicz, Sur la continuité et classification de Baire des fonctions abstraites, Fund. Math. 35 (1948), 105-126.
- [3] K. Alster and R. Pol, On function spaces of compact subspaces of Σ-products of the real line, ibid. 107 (1980), 135-143. Zbl0432.54013
- [4] A. V. Arkhangel’skiĭ, A survey of -theory, Questions Answers Gen. Topology 5 (1987), 1-109 (special issue).
- [5] A. V. Arkhangel’skiĭ, -theory, in: M. Hušek and J. van Mill (eds.), Recent Progress in General Topology (Prague, 1991), North-Holland, 1992, 1-56.
- [6] A. V. Arkhangel'skiĭ and V. I. Ponomarev, Fundamentals of General Topology, Reidel, 1984.
- [7] J. Bourgain, D. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886. Zbl0413.54016
- [8] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, 1983. Zbl0512.46017
- [9] A. Bouziad, Notes sur la propriété de Namioka, Trans. Amer. Math. Soc. 344 (1994), 873-883.
- [10] A. Bouziad, Every Čech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124 (1996), 953-959. Zbl0857.22001
- [11] B. Cascales, G. Manjabacas and G. Vera, A Krein-Smulian type result in Banach spaces, Quart. J. Math. Oxford 48 (1997), 161-167. Zbl0886.46014
- [12] B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl. 182 (1994), 41-68. Zbl0808.46021
- [13] G. A. Edgar, Measurability in a Banach space I, Indiana Univ. Math. J. 26 (1977), 663-677. Zbl0361.46017
- [14] R. Engelking, General Topology, PWN-Polish Sci. Publ., 1977.
- [15] G. Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), 293-306.
- [16] G. Godefroy et M. Talagrand, Espaces de Banach représentables, Israel J. Math. 41 (1982), 321-330. Zbl0498.46016
- [17] R. Haydon, On Banach spaces which contain and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324. Zbl0365.46020
- [18] J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets, Collect. Math. 41 (1990), 133-163. Zbl0764.46015
- [19] J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. 66 (1993), 651-672. Zbl0793.54026
- [20] J. E. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math. 155 (1985), 41-79. Zbl0588.54020
- [21] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss. 208, Springer, Berlin, 1974. Zbl0285.46024
- [22] W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. 20 (1970), 507-524. Zbl0199.37802
- [23] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531. Zbl0294.54010
- [24] I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1989), 258-281. Zbl0654.46017
- [25] H. P. Rosenthal, A characterization of Banach spaces containing , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. Zbl0297.46013
- [26] C. Stegall, Functions of the first Baire class, Proc. Amer. Math. Soc. 111 (1991), 981-991.
- [27] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438. Zbl0393.46019
- [28] M. Talagrand, Sur les mesures vectorielles définies par une application Pettis-intégrable, Bull. Soc. Math. France 108 (1980), 475-483. Zbl0459.46029
- [29] M. Talagrand, Sur les espaces de Banach contenant , Israel J. Math. 40 (1981), 324-330.
- [30] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).
- [31] F. Topsoe and J. Hoffmann-Jorgensen, Analytic sets, chapter in: Analytic Spaces and Their Applications (Part 3), Academic Press, 1980, 317-398.
- [32] S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228.
- [33] G. Vera, Pointwise compactness and continuity of the integral, Rev. Mat. Univ. Complut. Madrid 9 (1996), 221-245 (special issue). Zbl0873.28005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.