Bouts d'un groupe opérant sur la droite, I : théorie algébrique
On étudie les morphismes d’un groupe infini discret dans un groupe de Lie contenu dans le groupe des difféomorphismes de la droite réelle. À un tel morphisme , on associe deux ensembles de “bouts” de “dans la direction” . On calcule le nombre de bouts dans plusieurs situations. Dans le cas particulier où est de type fini et où est le groupe des translations, n’a qu’un bout dans la direction si, et seulement si, ils vérifient la propriété de Bieri-Neumann-Strebel.