The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Graphs without induced P₅ and C₅

Gabor BacsóZsolt Tuza — 2004

Discussiones Mathematicae Graph Theory

Zverovich [Discuss. Math. Graph Theory 23 (2003), 159-162.] has proved that the domination number and connected domination number are equal on all connected graphs without induced P₅ and C₅. Here we show (with an independent proof) that the following stronger result is also valid: Every P₅-free and C₅-free connected graph contains a minimum-size dominating set that induces a complete subgraph.

The cost chromatic number and hypergraph parameters

Gábor BacsóZsolt Tuza — 2006

Discussiones Mathematicae Graph Theory

In a graph, by definition, the weight of a (proper) coloring with positive integers is the sum of the colors. The chromatic sum is the minimum weight, taken over all the proper colorings. The minimum number of colors in a coloring of minimum weight is the cost chromatic number or strength of the graph. We derive general upper bounds for the strength, in terms of a new parameter of representations by edge intersections of hypergraphs.

Dominating bipartite subgraphs in graphs

Gábor BacsóDanuta MichalakZsolt Tuza — 2005

Discussiones Mathematicae Graph Theory

A graph G is hereditarily dominated by a class 𝓓 of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to 𝓓. In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.

Graph domination in distance two

Gábor BacsóAttila TálosZsolt Tuza — 2005

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph, and k ≥ 1 an integer. A subgraph D is said to be k-dominating in G if every vertex of G-D is at distance at most k from some vertex of D. For a given class of graphs, Domₖ is the set of those graphs G in which every connected induced subgraph H has some k-dominating induced subgraph D ∈ which is also connected. In our notation, Dom coincides with Dom₁. In this paper we prove that D o m D o m u = D o m u holds for u = all connected graphs without induced P u (u ≥ 2). (In particular, ₂ = K₁ and...

Page 1

Download Results (CSV)