The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely -Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
Download Results (CSV)