Products of ideals of Borel sets
The eigenproblem of a circulant matrix in max-min algebra is investigated. Complete characterization of the eigenspace structure of a circulant matrix is given by describing all possible types of eigenvectors in detail.
The interval eigenproblem in max-min algebra is studied. A classification of interval eigenvectors is introduced and six types of interval eigenvectors are described. Characterization of all six types is given for the case of strictly increasing eigenvectors and Hasse diagram of relations between the types is presented.
A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.
Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to...
Page 1