The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The “quantum duality principle” states that the quantization of a Lie bialgebra – via a
quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of
the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum
formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie
bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie
bialgebra as well; more in detail, there exist functors and , inverse to...
Download Results (CSV)