Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The Kodaira dimension of the moduli space of Prym varieties

Gavril FarkasKatharina Ludwig — 2010

Journal of the European Mathematical Society

We study the enumerative geometry of the moduli space g of Prym varieties of dimension g - 1 . Our main result is that the compactication of g is of general type as soon as g > 13 and g is different from 15. We achieve this by computing the class of two types of cycles on g : one defined in terms of Koszul cohomology of Prym curves, the other defined in terms of Raynaud theta divisors associated to certain vector bundles on curves. We formulate a Prym–Green conjecture on syzygies of Prym-canonical curves....

Singularities of theta divisors and the geometry of 𝒜 5

Gavril FarkasSamuele GrushevskySalvati R. ManniAlessandro Verra — 2014

Journal of the European Mathematical Society

We study the codimension two locus H in 𝒜 g consisting of principally polarized abelian varieties whose theta divisor has a singularity that is not an ordinary double point. We compute the class [ H ] C H 2 ( 𝒜 g ) for every g . For g = 4 , this turns out to be the locus of Jacobians with a vanishing theta-null. For g = 5 , via the Prym map we show that H 𝒜 5 has two components, both unirational, which we describe completely. We then determine the slope of the effective cone of 𝒜 5 ¯ and show that the component N 0 ' ¯ of the Andreotti-Mayer...

Page 1

Download Results (CSV)