Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves

Gavril Farkas; Mircea Mustaţǎ; Mihnea Popa[1]

  • [1] University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 4, page 553-581
  • ISSN: 0012-9593

How to cite

top

Farkas, Gavril, Mustaţǎ, Mircea, and Popa, Mihnea. "Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves." Annales scientifiques de l'École Normale Supérieure 36.4 (2003): 553-581. <http://eudml.org/doc/82610>.

@article{Farkas2003,
affiliation = {University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)},
author = {Farkas, Gavril, Mustaţǎ, Mircea, Popa, Mihnea},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {minimal resolution conjecture; Betti numbers; theta divisors},
language = {eng},
number = {4},
pages = {553-581},
publisher = {Elsevier},
title = {Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves},
url = {http://eudml.org/doc/82610},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Farkas, Gavril
AU - Mustaţǎ, Mircea
AU - Popa, Mihnea
TI - Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 4
SP - 553
EP - 581
LA - eng
KW - minimal resolution conjecture; Betti numbers; theta divisors
UR - http://eudml.org/doc/82610
ER -

References

top
  1. [1] Arbarello E., Cornalba M., Footnotes to a paper of Beniamino Segre, Math. Ann.256 (1981) 341-362. Zbl0454.14023MR626954
  2. [2] Arbarello E., Cornalba M., Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Etudes Sci. Publ. Math.88 (1998) 97-127. Zbl0991.14012MR1733327
  3. [3] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of Algebraic Curves, Grundlehren, 267, Springer, 1985. Zbl0559.14017MR770932
  4. [4] Ballico E., Geramita A.V., The minimal free resolution of the ideal of s general points in P3, in: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., 6, Amer. Math. Society, Providence, RI, 1986, pp. 1-10. Zbl0621.14003MR846012
  5. [5] Eisenbud D., Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1995. Zbl0819.13001MR1322960
  6. [6] Eisenbud D., Harris J., Limit linear series: basic theory, Invent. Math.85 (2) (1986) 337-371. Zbl0598.14003MR846932
  7. [7] Eisenbud D., Harris J., Irreducibility of some families of linear series with Brill–Noether number −1, Ann. Scient. Ec. Norm. Sup. (4)22 (1) (1989) 33-53. Zbl0691.14006
  8. [8] Eisenbud D., Popescu S., Gale duality and free resolutions of ideals of points, Invent. Math.136 (2) (1999) 419-449. Zbl0943.13011MR1688433
  9. [9] Eisenbud D., Popescu S., Schreyer F.-O., Walter Ch., Exterior algebra methods for the Minimal Resolution Conjecture, preprint, 2000, math.AG/0011236. MR1894365
  10. [10] Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space curves, Math. Ann.256 (1981) 453-463. Zbl0443.14015MR628227
  11. [11] Fulton W., Intersection Theory, Springer-Verlag, Berlin, 1998. Zbl0541.14005MR1644323
  12. [12] Gaeta F., A fully explicit resolution of the ideal defining N generic points in the plane, preprint, 1995. 
  13. [13] Green M., Koszul cohomology and geometry, in: Lectures on Riemann surfaces, World Scientific, Singapore, 177–200. Zbl0800.14004MR1082354
  14. [14] Green M., Lazarsfeld R., On the projective normality of complete linear series on an algebraic curve, Invent. Math.83 (1986) 73-90. Zbl0594.14010MR813583
  15. [15] Green M., Lazarsfeld R., A simple proof of Petri's theorem on canonical curves, in: Geometry Today, Progress in Math., Birkhäuser, 1986. Zbl0577.14018
  16. [16] Green M., Lazarsfeld R., Some results on the syzygies of finite sets and algebraic curves, Compositio Math.67 (1988) 301-314. Zbl0671.14010MR959214
  17. [17] Harris J., On the Kodaira dimension of the moduli space of curves. The even genus case, Invent. Math.75 (3) (1984) 437-466. Zbl0542.14014MR735335
  18. [18] Harris J., Morrison I., Moduli of Curves, Springer-Verlag, New York, 1998. Zbl0913.14005MR1631825
  19. [19] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math.67 (1) (1982) 23-88. Zbl0506.14016MR664324
  20. [20] Hirschowitz A., Simpson C., La résolution minimale de l'arrangement d'un grand nombre de points dans Pn, Invent. Math.126 (3) (1996) 467-503. Zbl0877.14035MR1419005
  21. [21] Lazarsfeld R., A sampling of vector bundle techniques in the study of linear series, in: Lectures on Riemann Surfaces, World Scientific, Singapore, 1989, pp. 500-559. Zbl0800.14003MR1082360
  22. [22] Lazarsfeld R., private communication. 
  23. [23] Logan A., Moduli spaces of curves with marked points, Ph.D. Thesis, Harvard University, 1999. 
  24. [24] Lorenzini A.M., On the Betti numbers of points in projective space, Ph.D. Thesis, Queen's University, Kingston, Ontario, 1987. Zbl0725.14037
  25. [25] Lorenzini A.M., The minimal resolution conjecture, J. Algebra156 (1) (1993) 5-35. Zbl0811.13008MR1213782
  26. [26] Mustaţǎ M., Graded Betti numbers of general finite subsets of points on projective varieties, Le Matematiche53 (1998) 53-81. Zbl0943.13010MR1696018
  27. [27] Paranjape K., Ramanan S., On the canonical ring of a curve, in: Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuriya, 1988, pp. 503-516. Zbl0699.14041MR977775
  28. [28] Popa M., On the base locus of the generalized theta divisor, C. R. Acad. Sci. Paris329 (1) (1999) 507-512. Zbl0959.14020MR1715133
  29. [29] Raynaud M., Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France110 (1982) 103-125. Zbl0505.14011MR662131
  30. [30] Walter Ch., The minimal free resolution of the homogeneous ideal of s general points in P4, Math. Z.219 (2) (1995) 231-234. Zbl0826.14037MR1337218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.