Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves
Gavril Farkas; Mircea Mustaţǎ; Mihnea Popa[1]
- [1] University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 4, page 553-581
- ISSN: 0012-9593
Access Full Article
topHow to cite
topFarkas, Gavril, Mustaţǎ, Mircea, and Popa, Mihnea. "Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves." Annales scientifiques de l'École Normale Supérieure 36.4 (2003): 553-581. <http://eudml.org/doc/82610>.
@article{Farkas2003,
affiliation = {University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)},
author = {Farkas, Gavril, Mustaţǎ, Mircea, Popa, Mihnea},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {minimal resolution conjecture; Betti numbers; theta divisors},
language = {eng},
number = {4},
pages = {553-581},
publisher = {Elsevier},
title = {Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves},
url = {http://eudml.org/doc/82610},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Farkas, Gavril
AU - Mustaţǎ, Mircea
AU - Popa, Mihnea
TI - Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 4
SP - 553
EP - 581
LA - eng
KW - minimal resolution conjecture; Betti numbers; theta divisors
UR - http://eudml.org/doc/82610
ER -
References
top- [1] Arbarello E., Cornalba M., Footnotes to a paper of Beniamino Segre, Math. Ann.256 (1981) 341-362. Zbl0454.14023MR626954
- [2] Arbarello E., Cornalba M., Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Etudes Sci. Publ. Math.88 (1998) 97-127. Zbl0991.14012MR1733327
- [3] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of Algebraic Curves, Grundlehren, 267, Springer, 1985. Zbl0559.14017MR770932
- [4] Ballico E., Geramita A.V., The minimal free resolution of the ideal of s general points in P3, in: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., 6, Amer. Math. Society, Providence, RI, 1986, pp. 1-10. Zbl0621.14003MR846012
- [5] Eisenbud D., Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1995. Zbl0819.13001MR1322960
- [6] Eisenbud D., Harris J., Limit linear series: basic theory, Invent. Math.85 (2) (1986) 337-371. Zbl0598.14003MR846932
- [7] Eisenbud D., Harris J., Irreducibility of some families of linear series with Brill–Noether number −1, Ann. Scient. Ec. Norm. Sup. (4)22 (1) (1989) 33-53. Zbl0691.14006
- [8] Eisenbud D., Popescu S., Gale duality and free resolutions of ideals of points, Invent. Math.136 (2) (1999) 419-449. Zbl0943.13011MR1688433
- [9] Eisenbud D., Popescu S., Schreyer F.-O., Walter Ch., Exterior algebra methods for the Minimal Resolution Conjecture, preprint, 2000, math.AG/0011236. MR1894365
- [10] Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space curves, Math. Ann.256 (1981) 453-463. Zbl0443.14015MR628227
- [11] Fulton W., Intersection Theory, Springer-Verlag, Berlin, 1998. Zbl0541.14005MR1644323
- [12] Gaeta F., A fully explicit resolution of the ideal defining N generic points in the plane, preprint, 1995.
- [13] Green M., Koszul cohomology and geometry, in: Lectures on Riemann surfaces, World Scientific, Singapore, 177–200. Zbl0800.14004MR1082354
- [14] Green M., Lazarsfeld R., On the projective normality of complete linear series on an algebraic curve, Invent. Math.83 (1986) 73-90. Zbl0594.14010MR813583
- [15] Green M., Lazarsfeld R., A simple proof of Petri's theorem on canonical curves, in: Geometry Today, Progress in Math., Birkhäuser, 1986. Zbl0577.14018
- [16] Green M., Lazarsfeld R., Some results on the syzygies of finite sets and algebraic curves, Compositio Math.67 (1988) 301-314. Zbl0671.14010MR959214
- [17] Harris J., On the Kodaira dimension of the moduli space of curves. The even genus case, Invent. Math.75 (3) (1984) 437-466. Zbl0542.14014MR735335
- [18] Harris J., Morrison I., Moduli of Curves, Springer-Verlag, New York, 1998. Zbl0913.14005MR1631825
- [19] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math.67 (1) (1982) 23-88. Zbl0506.14016MR664324
- [20] Hirschowitz A., Simpson C., La résolution minimale de l'arrangement d'un grand nombre de points dans Pn, Invent. Math.126 (3) (1996) 467-503. Zbl0877.14035MR1419005
- [21] Lazarsfeld R., A sampling of vector bundle techniques in the study of linear series, in: Lectures on Riemann Surfaces, World Scientific, Singapore, 1989, pp. 500-559. Zbl0800.14003MR1082360
- [22] Lazarsfeld R., private communication.
- [23] Logan A., Moduli spaces of curves with marked points, Ph.D. Thesis, Harvard University, 1999.
- [24] Lorenzini A.M., On the Betti numbers of points in projective space, Ph.D. Thesis, Queen's University, Kingston, Ontario, 1987. Zbl0725.14037
- [25] Lorenzini A.M., The minimal resolution conjecture, J. Algebra156 (1) (1993) 5-35. Zbl0811.13008MR1213782
- [26] Mustaţǎ M., Graded Betti numbers of general finite subsets of points on projective varieties, Le Matematiche53 (1998) 53-81. Zbl0943.13010MR1696018
- [27] Paranjape K., Ramanan S., On the canonical ring of a curve, in: Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuriya, 1988, pp. 503-516. Zbl0699.14041MR977775
- [28] Popa M., On the base locus of the generalized theta divisor, C. R. Acad. Sci. Paris329 (1) (1999) 507-512. Zbl0959.14020MR1715133
- [29] Raynaud M., Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France110 (1982) 103-125. Zbl0505.14011MR662131
- [30] Walter Ch., The minimal free resolution of the homogeneous ideal of s general points in P4, Math. Z.219 (2) (1995) 231-234. Zbl0826.14037MR1337218
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.