The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The joint distribution of Q -additive functions on polynomials over finite fields

Michael DrmotaGeorg Gutenbrunner — 2005

Journal de Théorie des Nombres de Bordeaux

Let K be a finite field and Q K [ T ] a polynomial of positive degree. A function f on K [ T ] is called (completely) Q -additive if f ( A + B Q ) = f ( A ) + f ( B ) , where A , B K [ T ] and deg ( A ) < deg ( Q ) . We prove that the values ( f 1 ( A ) , ... , f d ( A ) ) are asymptotically equidistributed on the (finite) image set { ( f 1 ( A ) , ... , f d ( A ) ) : A K [ T ] } if Q j are pairwise coprime and f j : K [ T ] K [ T ] are Q j -additive. Furthermore, it is shown that ( g 1 ( A ) , g 2 ( A ) ) are asymptotically independent and Gaussian if g 1 , g 2 : K [ T ] are Q 1 - resp. Q 2 -additive.

Page 1

Download Results (CSV)