Efficiency and the Uniform Linear Minorization of Convex Functions.
A net in a Hausdorff uniform space is called cofinally Cauchy if for each entourage, there exists a cofinal (rather than residual) set of indices whose corresponding terms are pairwise within the entourage. In a metric space equipped with the associated metric uniformity, if each cofinally Cauchy sequence has a cluster point, then so does each cofinally Cauchy net, and the space is called cofinally complete. Here we give necessary and sufficient conditions for the nonempty closed subsets of the...
The Vietoris topology and Fell topologies on the closed subsets of a Hausdorff uniform space are prototypes for hit-and-miss hyperspace topologies, having as a subbase all closed sets that hit a variable open set, plus all closed sets that miss (= fail to intersect) a variable closed set belonging to a prescribed family of closed sets. In the case of the Fell topology, where consists of the compact sets, a closed set misses a member of if and only if is far from in a uniform sense....
A metric space is called a space provided each continuous function on into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that spaces play relative to the compact metric spaces.
Page 1