A generalization of boundedly compact metric spaces
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 2, page 361-367
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBeer, Gerald, and Di Concilio, Anna. "A generalization of boundedly compact metric spaces." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 361-367. <http://eudml.org/doc/247275>.
@article{Beer1991,
abstract = {A metric space $\langle X,d\rangle $ is called a $\operatorname\{UC\}$ space provided each continuous function on $X$ into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that $\operatorname\{UC\}$ spaces play relative to the compact metric spaces.},
author = {Beer, Gerald, Di Concilio, Anna},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\operatorname\{UC\}$ space; boundedly $\operatorname\{UC\}$ space; boundedly compact space; Atsuji space; uniform continuity on bounded sets; topology of uniform convergence on bounded sets; Attouch–Wets topology; UC spaces; boundedly compact spaces; set of nonisolated points; Hausdorff metric; Attouch-Wets topology},
language = {eng},
number = {2},
pages = {361-367},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A generalization of boundedly compact metric spaces},
url = {http://eudml.org/doc/247275},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Beer, Gerald
AU - Di Concilio, Anna
TI - A generalization of boundedly compact metric spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 361
EP - 367
AB - A metric space $\langle X,d\rangle $ is called a $\operatorname{UC}$ space provided each continuous function on $X$ into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that $\operatorname{UC}$ spaces play relative to the compact metric spaces.
LA - eng
KW - $\operatorname{UC}$ space; boundedly $\operatorname{UC}$ space; boundedly compact space; Atsuji space; uniform continuity on bounded sets; topology of uniform convergence on bounded sets; Attouch–Wets topology; UC spaces; boundedly compact spaces; set of nonisolated points; Hausdorff metric; Attouch-Wets topology
UR - http://eudml.org/doc/247275
ER -
References
top- Atsuji M., Uniform continuity of continuous functions on metric spaces, Pacific J. Math. 8 (1958), 11-16. (1958) MR0099023
- Atsuji M., Uniform continuity of continuous functions on uniform spaces, Pacific J. Math. 13 (1961), 657-663. (1961) Zbl0102.37703MR0165489
- Attouch H., Wets R., Quantitative stability of variational systems: I. The epigraphical distance, to appear, Trans. Amer. Math. Soc. Zbl0753.49007MR1018570
- Attouch H., Lucchetti R., Wets R., The topology of the -Hausdorff distance, to appear, Annali Mat. Pura Appl. Zbl0769.54009
- Azé D., Penot J.-P., Operations on convergent families of sets and functions, Optimization 21 (1990), 521-534. (1990) MR1069660
- Beer G., Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc. 95 (1985), 653-658. (1985) Zbl0594.54007MR0810180
- Beer G., More about metric spaces on which continuous functions are uniformly continuous, Bull. Australian Math. Soc. 33 (1986), 397-406. (1986) Zbl0573.54026MR0837486
- Beer G., UC spaces revisited, Amer. Math. Monthly 95 (1988), 737-739. (1988) Zbl0656.54022MR0966244
- Beer G., Convergence of continuous linear functionals and their level sets, Archiv der Math. 52 (1989), 482-491. (1989) Zbl0662.46015MR0998621
- Beer G., Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc. 108 (1990), 117-126. (1990) Zbl0681.46014MR0982400
- Beer G., Di Concilio A., Uniform continuity on bounded sets and the Attouch-Wets topology, to appear, Proc. Amer. Math. Soc. Zbl0677.54007MR1033956
- Beer G., Himmelberg C., Prikry K., Van Vleck F., The locally finite topology on , Proc. Amer. Math. Soc. 101 (1987), 168-172. (1987) MR0897090
- Beer G., Lucchetti A., Convex optimization and the epi-distance topology, to appear, Trans. Amer. Math. Soc. Zbl0681.46013MR1012526
- Beer G., Lucchetti A., Weak topologies for the closed subsets of a metrizable space, preprint. Zbl0810.54011
- Castaing C., Valadier M., Convex analysis and measurable multifunctions, Lecture Notes in Mathematics No. 580, Springer-Verlag, Berlin, 1977. Zbl0346.46038MR0467310
- Di Concilio A., Naimpally S., Atsuji spaces - continuity versus uniform continuity, in Proc. VI Brazilian Conf. on Topology, Campinǫs-Sao Paulo, August 1988.
- Hausdorff H., Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353-360. (1930)
- Holá L., The Attouch-Wets topology and a characterization of normable linear spaces, to appear, Bull. Australian Math. Soc. MR1120389
- Hueber H., On uniform continuity and compactness in metric spaces, Amer. Math. Monthly 88 (1981), 204-205. (1981) Zbl0451.54024MR0619571
- Levine N., Remarks on uniform continuity in metric spaces, Amer. Math. Monthly 67 (1979), 562-563. (1979) MR0116310
- Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. (1951) Zbl0043.37902MR0042109
- Monteiro A., Peixoto M., Le nombre de Lebesgue et la continuité uniforme, Portugaliae Math. 10 (1951), 105-113. (1951) Zbl0045.25801MR0044608
- Nagata J., On the uniform topology of bicompactifications, J. Inst. Polytech. Osaka City University 1 (1950), 28-38. (1950) Zbl0041.51601MR0037501
- Penot J.-P., The cosmic Hausdorff topology, the bounded Hausdorff topology, and continuity of polarity, to appear, Proc. Amer. Math. Soc. Zbl0774.54008MR1068129
- Rainwater J., Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567-570. (1959) Zbl0088.38301MR0106448
- Revalski J., Zhivkov N., Well-posed optimization problems in metric spaces, preprint.
- Sendov Bl., Hausdorff approximations, Bulgarian Academy of Sciences, Sofia, 1979 (in Russian); English version published by Kluwer, Dordrecht, Holland, 1990. Zbl0715.41001MR1078632
- Toader Gh., On a problem of Nagata, Mathematica (Cluj) 20 (43) (1978), 78-79. (1978) Zbl0409.54041MR0530953
- Vaughan H., On locally compact metrizable spaces, Bull. Amer. Math. Soc. 43 (1937), 532-535. (1937) MR1563581
- Waterhouse W., On UC spaces, Amer. Math. Monthly 72 (1965), 634-635. (1965) Zbl0136.19802MR0184200
Citations in EuDML Documents
top- Ľubica Holá, Dušan Holý, Further characterizations of boundedly UC spaces
- A. Di Concilio, A. Miranda, Function space topologies deriving from hypertopologies and networks
- Gerald Beer, Robert K. Tamaki, On hit-and-miss hyperspace topologies
- Alessandro Caterino, Rita Ceppitelli, Ľubica Holà, Well-posedness of optimization problems and Hausdorff metric on partial maps
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.