The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Hamiltonicity and the 3-Opt procedure for the traveling Salesman problem

Gerard Sierksma — 1994

Applicationes Mathematicae

The 3-Opt procedure deals with interchanging three edges of a tour with three edges not on that tour. For n≥6, the 3-Interchange Graph is a graph on 1/2(n-1)! vertices, corresponding to the hamiltonian tours in K_n; two vertices are adjacent iff the corresponding hamiltonian tours differ in an interchange of 3 edges; i.e. the tours differ in a single 3-Opt step. It is shown that the 3-Interchange Graph is a hamiltonian subgraph of the Symmetric Traveling Salesman Polytope. Upper bounds are derived...

On the complexity of determining tolerances for ε-optimal solutions to min-max combinatorial optimization problems

Diptesh GhoshGerard Sierksma — 2003

Applicationes Mathematicae

This paper studies the complexity of sensitivity analysis for optimal and ε-optimal solutions to general 0-1 combinatorial optimization problems with min-max objectives. Van Hoesel and Wagelmans [9] have studied the complexity of sensitivity analysis of optimal and ε-optimal solutions to min-sum problems, and Ramaswamy et al. [17] the complexity of sensitivity analysis of optimal solutions to min-max problems. We show that under some mild assumptions the sensitivity analysis of ε-optimal solutions...

Page 1

Download Results (CSV)