The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Size of the giant component in a random geometric graph

Ghurumuruhan Ganesan — 2013

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we study the size of the giant component C G in the random geometric graph G = G ( n , r n , f ) of n nodes independently distributed each according to a certain density f ( · ) in [ 0 , 1 ] 2 satisfying inf x [ 0 , 1 ] 2 f ( x ) g t ; 0 . If c 1 n r n 2 c 2 log n n for some positive constants c 1 , c 2 and n r n 2 as n , we show that the giant component of G contains at least n - o ( n ) nodes with probability at least 1 - e - β n r n 2 for all n and for some positive constant β . We also obtain estimates on the diameter and number of the non-giant components of G .

Page 1

Download Results (CSV)