Blow-up of oriented boundaries
Given an open, bounded and connected set with Lipschitz boundary and volume , we prove that the sequence of Dirichlet functionals defined on , with volume constraints on fixed level-sets, and such that for all , -converges, as with , to the squared total variation on , with as volume constraint on the same level-sets.
We prove some results in the context of isoperimetric inequalities with quantitative terms. In the -dimensional case, our main contribution is a method for determining the optimal coefficients in the inequality , valid for each Borel set with positive and finite area, with and being, respectively, the and the of . In dimensions, besides proving existence and regularity properties of minimizers for a wide class of including the lower semicontinuous extension of , we describe the...
Page 1