On a generalization of the Selection Theorem of Mahler
The set of point sets of , having the property that their minimal interpoint distance is greater than a given strictly positive constant is shown to be equippable by a metric for which it is a compact topological space and such that the Hausdorff metric on the subset of the finite point sets is compatible with the restriction of this topology to . We show that its subsets of Delone sets of given constants in , are compact. Three (classes of) metrics, whose one of crystallographic nature,...