On a generalization of the Selection Theorem of Mahler
Gilbert Muraz[1]; Jean-Louis Verger-Gaugry[1]
- [1] Institut Fourier - CNRS UMR 5582 Université de Grenoble I BP 74 - Domaine Universitaire 38402 Saint Martin d’Hères, France
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 237-269
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMuraz, Gilbert, and Verger-Gaugry, Jean-Louis. "On a generalization of the Selection Theorem of Mahler." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 237-269. <http://eudml.org/doc/249457>.
@article{Muraz2005,
abstract = {The set $\mathcal\{U\}\mathcal\{D\}_\{r\}$ of point sets of $\mathbb\{R\}^\{n\}, n \ge 1$, having the property that their minimal interpoint distance is greater than a given strictly positive constant $r > 0$ is shown to be equippable by a metric for which it is a compact topological space and such that the Hausdorff metric on the subset $\mathcal\{U\}\mathcal\{D\}_\{r,f\} \subset \mathcal\{U\}\mathcal\{D\}_\{r\}$ of the finite point sets is compatible with the restriction of this topology to $\mathcal\{U\}\mathcal\{D\}_\{r,f\}$. We show that its subsets of Delone sets of given constants in $\mathbb\{R\}^\{n\}, n \ge 1$, are compact. Three (classes of) metrics, whose one of crystallographic nature, requiring a base point in the ambient space, are given with their corresponding properties, for which we show topological equivalence. The point-removal process is proved to be uniformly continuous at infinity. We prove that this compactness Theorem implies the classical Selection Theorem of Mahler. We discuss generalizations of this result to ambient spaces other than $\mathbb\{R\}^\{n\}$. The space $\mathcal\{U\}\mathcal\{D\}_\{r\}$ is the space of equal sphere packings of radius $r/2$.},
affiliation = {Institut Fourier - CNRS UMR 5582 Université de Grenoble I BP 74 - Domaine Universitaire 38402 Saint Martin d’Hères, France; Institut Fourier - CNRS UMR 5582 Université de Grenoble I BP 74 - Domaine Universitaire 38402 Saint Martin d’Hères, France},
author = {Muraz, Gilbert, Verger-Gaugry, Jean-Louis},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Mahler's selection theorem; Delone sets; Hausdorff metric},
language = {eng},
number = {1},
pages = {237-269},
publisher = {Université Bordeaux 1},
title = {On a generalization of the Selection Theorem of Mahler},
url = {http://eudml.org/doc/249457},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Muraz, Gilbert
AU - Verger-Gaugry, Jean-Louis
TI - On a generalization of the Selection Theorem of Mahler
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 237
EP - 269
AB - The set $\mathcal{U}\mathcal{D}_{r}$ of point sets of $\mathbb{R}^{n}, n \ge 1$, having the property that their minimal interpoint distance is greater than a given strictly positive constant $r > 0$ is shown to be equippable by a metric for which it is a compact topological space and such that the Hausdorff metric on the subset $\mathcal{U}\mathcal{D}_{r,f} \subset \mathcal{U}\mathcal{D}_{r}$ of the finite point sets is compatible with the restriction of this topology to $\mathcal{U}\mathcal{D}_{r,f}$. We show that its subsets of Delone sets of given constants in $\mathbb{R}^{n}, n \ge 1$, are compact. Three (classes of) metrics, whose one of crystallographic nature, requiring a base point in the ambient space, are given with their corresponding properties, for which we show topological equivalence. The point-removal process is proved to be uniformly continuous at infinity. We prove that this compactness Theorem implies the classical Selection Theorem of Mahler. We discuss generalizations of this result to ambient spaces other than $\mathbb{R}^{n}$. The space $\mathcal{U}\mathcal{D}_{r}$ is the space of equal sphere packings of radius $r/2$.
LA - eng
KW - Mahler's selection theorem; Delone sets; Hausdorff metric
UR - http://eudml.org/doc/249457
ER -
References
top- M. Baake, D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergod. Th. & Dynam. Sys. 24 (6) (2004), 1867–1893. Zbl1127.37004MR2106769
- N. Bourbaki, General Topology. Chapter IX, Addison-Wesley, Reading, 1966.
- L. Bowen, On the existence of completely saturated packings and completely reduced coverings. Geom. Dedicata 98 (2003), 211–226. Zbl1028.52009MR1988430
- J.W.S. Cassels, An introduction to the Geometry of Numbers. Springer Verlag, 1959. Zbl0086.26203
- C. Chabauty, Limite d’Ensembles et Géométrie des Nombres. Bull. Soc. Math. Fr. 78 (1950), 143–151. Zbl0039.04101MR38983
- J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer-Verlag, Berlin, 1999, third edition. Zbl0915.52003MR1662447
- S. Dworkin, Spectral Theory and X-Ray Diffraction. J. Math. Phys. 34 (7) (1993), 2965–2967. Zbl0808.47052MR1224190
- J.-P. Gazeau, J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théorie Nombres Bordeaux 16 (2004), 125–149. Zbl1075.11007MR2145576
- J.-B. Gouéré, Quasicrystals and almost-periodicity. Comm. Math. Phys. (2005), accepted. Zbl1081.52020MR2135448
- H. Groemer, Continuity properties of Voronoi domains. Monatsh. Math. 75 (1971), 423–431. Zbl0229.10012MR302565
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985. Zbl0574.10045MR803155
- P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North-Holland, 1987. Zbl0611.10017MR893813
- T.C. Hales, Sphere Packings I. Discrete Comput. Geom. 17 (1997), 1–51. Zbl0883.52012MR1418278
- J.L. Kelley, Hyperspaces of a Continuum. Trans. Amer. Math. Soc. 52 (1942), 22–36. Zbl0061.40107MR6505
- J.C. Lagarias, Bounds for Local Density of Sphere Packings and the Kepler Conjecture. Discrete Comput. Geom. 27 (2002), 165–193. Zbl1005.52011MR1880936
- K. Mahler, On Lattice Points in -dimensional Star Bodies.I. Existence Theorems. Proc. Roy. Soc. London A 187 (1946), 151–187. Zbl0060.11710MR17753
- A.M. Macbeath, S. Swierczkowski, Limits of lattices in a compactly generated group. Canad. J. Math. 12 (1960), 427-437. Zbl0097.03301MR116068
- R.B. Mcfeat, Geometry of numbers in adele spaces. Dissertationes Math. (Rozprawy mat.), Warsawa, 88 (1971), 1–49. Zbl0229.10014MR318104
- E. Michael, Topologies on Spaces of Subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl0043.37902MR42109
- R.V. Moody, Meyer sets and their duals. In The Mathematics of Long-Range Aperiodic Order, Ed. by R.V. Moody, Kluwer Academic Publishers (1997), 403–441. Zbl0880.43008MR1460032
- D. Mumford, A Remark on Mahler’s Compactness Theorem. Proc. of the Amer. Math. Soc. 28 (1971), 289–294. Zbl0215.23202MR276410
- G. Muraz, J.-L. Verger-Gaugry, On lower bounds of the density of Delone sets and holes in sequences of sphere packings. Exp. Math. 14:1 (2005), 49–59. Zbl1108.52021MR2146518
- G. Muraz, J.-L. Verger-Gaugry, On continuity properties of Voronoi domains and a theorem of Groemer. Preprint (2004).
- C. Radin, M. Wolff, Space Tilings and Local Isomorphism. Geom. Dedicata 42 (1992), 355–360. Zbl0752.52014MR1164542
- E. Arthur Robinson, Jr., The Dynamical Theory of Tilings and Quasicrystallography. In Ergodic Theory of -actions, (Warwick 1993-4), London Math. Soc. Lec. Note Ser. 228, Cambridge Univ. Press, Cambridge, 451–473. Zbl0853.58093MR1411233
- C.A. Rogers, Packing and Covering. Cambridge University Press, 1964. Zbl0176.51401MR172183
- K. Rogers, H.P.F. Swinnerton-Dyer, The Geometry of Numbers over algebraic number fields. Trans. Amer. Math. Soc. 88 (1958), 227–242. Zbl0083.26206MR95160
- B. Solomyak, Spectrum of Dynamical Systems Arising from Delone Sets. In Quasicrystals and Discrete Geometry, Fields Institute Monographs, J. Patera Ed., 10 (1998), AMS, 265–275. Zbl0988.37010MR1636783
- K.B. Stolarsky, Sums of distances between points on a sphere. Proc. Amer. Math. Soc. 35 (1972), 547–549. Zbl0255.52004MR303418
- A. Weil, Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Hermann, Paris, 1938. Zbl0019.18604
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.