The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Selections and representations of multifunctions in paracompact spaces

Alberto BressanGiovanni Colombo — 1992

Studia Mathematica

Let (X,T) be a paracompact space, Y a complete metric space, F : X 2 Y a lower semicontinuous multifunction with nonempty closed values. We prove that if T + is a (stronger than T) topology on X satisfying a compatibility property, then F admits a T + -continuous selection. If Y is separable, then there exists a sequence ( f n ) of T + -continuous selections such that F ( x ) = f n ( x ) ; n 1 ¯ for all x ∈ X. Given a Banach space E, the above result is then used to construct directionally continuous selections on arbitrary subsets of ℝ × E.

Page 1

Download Results (CSV)