On a strong form of a conjecture of Boyle and Handelman.
Suppose that is an nonnegative matrix whose eigenvalues are . Fiedler and others have shown that , for all , with equality for any such if and only if is the simple cycle matrix. Let be the signed sum of the determinants of the principal submatrices of of order , . We use similar techniques to Fiedler to show that Fiedler’s inequality can be strengthened to: , for all . We use this inequality to derive the inequality that: . In the spirit of a celebrated conjecture due to Boyle-Handelman,...
Let be the Jacobian of the modular curve associated with and the one associated with . We study as a Hecke and Galois-module. We relate a certain matrix of -adic periods to the infinitesimal deformation of the -operator.
Page 1