Tamely ramified Hida theory
Assaf Goldberger[1]; Ehud de Shalit[2]
- [1] University of Massachussetts, Department of Mathematics, Amherst MA (USA)
- [2] Hebrew University, Institute of Mathematics, Giv'at-Ram 91904 Jerusalem (Israël)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 1, page 1-45
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGoldberger, Assaf, and Shalit, Ehud de. "Tamely ramified Hida theory." Annales de l’institut Fourier 52.1 (2002): 1-45. <http://eudml.org/doc/115973>.
@article{Goldberger2002,
abstract = {Let $J_1$ be the Jacobian of the modular curve associated with $\Gamma _1(Np),\; (p,N)=1$ and $J_0$ the one associated with $\Gamma _1(N)\cap \Gamma _0(p)$. We study $J_1[p-
1]$ as a Hecke and Galois-module. We relate a certain matrix of $p$-adic periods to
the infinitesimal deformation of the $U_p$-operator.},
affiliation = {University of Massachussetts, Department of Mathematics, Amherst MA (USA); Hebrew University, Institute of Mathematics, Giv'at-Ram 91904 Jerusalem (Israël)},
author = {Goldberger, Assaf, Shalit, Ehud de},
journal = {Annales de l’institut Fourier},
keywords = {modular curve; $p$-adic periods; Hecke operators; p-adic periods; Hida theory; deformation theory},
language = {eng},
number = {1},
pages = {1-45},
publisher = {Association des Annales de l'Institut Fourier},
title = {Tamely ramified Hida theory},
url = {http://eudml.org/doc/115973},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Goldberger, Assaf
AU - Shalit, Ehud de
TI - Tamely ramified Hida theory
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 1
EP - 45
AB - Let $J_1$ be the Jacobian of the modular curve associated with $\Gamma _1(Np),\; (p,N)=1$ and $J_0$ the one associated with $\Gamma _1(N)\cap \Gamma _0(p)$. We study $J_1[p-
1]$ as a Hecke and Galois-module. We relate a certain matrix of $p$-adic periods to
the infinitesimal deformation of the $U_p$-operator.
LA - eng
KW - modular curve; $p$-adic periods; Hecke operators; p-adic periods; Hida theory; deformation theory
UR - http://eudml.org/doc/115973
ER -
References
top- A.O.L. Atkin, J. Lehner, Hecke operators on , Math. Annalen 185 (1970), 134-160 Zbl0177.34901MR268123
- A.O.L. Atkin, W. Li, Twists of newforms and pseudo-eigenvalues of W-operators, Inv. Math. 43 (1978), 221-244 Zbl0369.10016MR508986
- S. Bosch, Abelian varieties from the rigid-analytic viewpoint, Barsotti Symposium in Algebraic Geometry (1994), 51-63, Academic Press Zbl0836.14028
- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, 21 (1990), Springer Zbl0705.14001MR1045822
- P. Deligne, M. Rapoport, Schémas de modules de courbes elliptiques, 349 (1973), Springer Zbl0281.14010MR337993
- E. de Shalit, On certain Galois representations related to the modular curve , Compositio Math. 95 (1995), 69-100 Zbl0853.11045MR1314697
- E. de Shalit, -adic periods and modular symbols of elliptic curves of prime conductor, Inv. Math. 121 (1995), 225-255 Zbl1044.11576MR1346205
- E. de Shalit, Néron models and p-adic uniformization of generalized Jacobians
- B. Edixhoven, L'action de l'algebre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est ``Eisenstein'', Astérisque 196-197 (1991), 59-70 Zbl0781.14019MR1141457
- R. Greenberg, G. Stevens, -adic -functions and -adic periods of modular forms, Inv. Math. 111 (1993), 407-447 Zbl0778.11034MR1198816
- H. Hida, Galois representations into attached to ordinary cusp forms, Inv. Math. 85 (1986), 545-613 Zbl0612.10021MR848685
- N. Katz, B. Mazur, Arithmetic moduli of elliptic curves, 108 (1985), Princeton Zbl0576.14026MR772569
- B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S 47 (1977), 33-186 Zbl0394.14008MR488287
- B. Mazur, J. Tate, Refined conjectures of "Birch and Swinnerton-Dyer type", Duke Math. J. 54 (1987), 711-750 Zbl0636.14004MR899413
- B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinerton-Dyer, Inv. Math. 84 (1986), 1-48 Zbl0699.14028MR830037
- B. Mazur, A. Wiles, Class fields of abelian extensions of , Inv. Math. 76 (1984), 179-330 Zbl0545.12005MR742853
- B. Mazur, A. Wiles, On -adic analytic families of Galois representations, Compositio Math. 59 (1986), 231-264 Zbl0654.12008MR860140
- K. Ribet, Congruence relations between modular forms, Proc. International Congress of Math. 17 (1983), 503-514 Zbl0575.10024
- A. Grothendieck, Modéles de Néron et monodromie (exposé IX), SGA 71 288 (1972), Springer Zbl0248.14006
- A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443-551 Zbl0823.11029MR1333035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.