On the Cauchy-problem for generalized Kadomtsev-Petviashvili-II equations.
The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces defined by the norm . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < . The results for r = 2 - so far in...
Page 1