On the hierarchies of higher order mKdV and KdV equations

Axel Grünrock

Open Mathematics (2010)

  • Volume: 8, Issue: 3, page 500-536
  • ISSN: 2391-5455

Abstract

top
The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces H ^ s r defined by the norm v 0 H ^ s r : = ξ s v 0 ^ L ξ r ' , ξ = 1 + ξ 2 1 2 , 1 r + 1 r ' = 1 . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ 2 j - 1 2 r ' . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < 2 j - 1 2 r ' . The results for r = 2 - so far in the literature only if j = 1 (mKdV) or j = 2 - can be combined with the higher order conservation laws for the mKdV equation to obtain global well-posedness of the jth equation in H s(ℝ) for s ≥ j + 1 2 , if j is odd, and for s ≥ j 2 , if j is even. - The Cauchy problem for the jth equation in the KdV hierarchy with data in H ^ s r cannot be solved by Picard iteration, if r > 2 j 2 j - 1 , independent of the size of s ∈ ℝ. Especially for j ≥ 2 we have C 2-ill-posedness in H s(ℝ). With similar arguments as used before in the mKdV context it is shown that this problem is locally well-posed in H ^ s r , if 1 < r ≤ 2 j 2 j - 1 and s > j - 3 2 - 1 2 j + 2 j - 1 2 r ' . For KdV itself the lower bound on s is pushed further down to s > m a x - 1 2 - 1 2 r ' - 1 4 - 11 8 r ' , where r ∈ (1,2). These results rely on the contraction mapping principle, and the flow map is real analytic.

How to cite

top

Axel Grünrock. "On the hierarchies of higher order mKdV and KdV equations." Open Mathematics 8.3 (2010): 500-536. <http://eudml.org/doc/269252>.

@article{AxelGrünrock2010,
abstract = {The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces \[ \hat\{H\}\_s^r \left( \mathbb \{R\} \right) \] defined by the norm \[ \left\Vert \{v\_0 \} \right\Vert \_\{\hat\{H\}\_s^r \left( \mathbb \{R\} \right)\} : = \left\Vert \{\left\langle \xi \right\rangle ^s \widehat\{v\_0 \}\} \right\Vert \_\{L\_\xi ^\{r^\{\prime \}\} \} , \left\langle \xi \right\rangle = \left( \{1 + \xi ^2 \} \right)^\{\frac\{1\}\{2\}\} , \frac\{1\}\{r\} + \frac\{1\}\{\{r^\{\prime \}\}\} = 1 \] . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ \[ \frac\{\{2j - 1\}\}\{\{2r^\{\prime \}\}\} \] . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < \[ \frac\{\{2j - 1\}\}\{\{2r^\{\prime \}\}\} \] . The results for r = 2 - so far in the literature only if j = 1 (mKdV) or j = 2 - can be combined with the higher order conservation laws for the mKdV equation to obtain global well-posedness of the jth equation in H s(ℝ) for s ≥ \[ \frac\{\{j + 1\}\}\{2\} \] , if j is odd, and for s ≥ \[ \frac\{j\}\{2\} \] , if j is even. - The Cauchy problem for the jth equation in the KdV hierarchy with data in \[ \hat\{H\}\_s^r \left( \mathbb \{R\} \right) \] cannot be solved by Picard iteration, if r > \[ \frac\{\{2j\}\}\{\{2j - 1\}\} \] , independent of the size of s ∈ ℝ. Especially for j ≥ 2 we have C 2-ill-posedness in H s(ℝ). With similar arguments as used before in the mKdV context it is shown that this problem is locally well-posed in \[ \hat\{H\}\_s^r \left( \mathbb \{R\} \right) \] , if 1 < r ≤ \[ \frac\{\{2j\}\}\{\{2j - 1\}\} \] and \[ s > j - \frac\{3\}\{2\} - \frac\{1\}\{\{2j\}\} + \frac\{\{2j - 1\}\}\{\{2r^\{\prime \}\}\} \] . For KdV itself the lower bound on s is pushed further down to \[ s > max\left( \{ - \frac\{1\}\{2\} - \frac\{1\}\{\{2r^\{\prime \}\}\} - \frac\{1\}\{4\} - \frac\{\{11\}\}\{\{8r^\{\prime \}\}\}\} \right) \] , where r ∈ (1,2). These results rely on the contraction mapping principle, and the flow map is real analytic.},
author = {Axel Grünrock},
journal = {Open Mathematics},
keywords = {mKdV and KdV hierarchies; Cauchy problem; Local and global well-posedness; Generalized Fourier restriction norm method; local and global well-posedness; generalized Fourier restriction norm method},
language = {eng},
number = {3},
pages = {500-536},
title = {On the hierarchies of higher order mKdV and KdV equations},
url = {http://eudml.org/doc/269252},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Axel Grünrock
TI - On the hierarchies of higher order mKdV and KdV equations
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 500
EP - 536
AB - The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces \[ \hat{H}_s^r \left( \mathbb {R} \right) \] defined by the norm \[ \left\Vert {v_0 } \right\Vert _{\hat{H}_s^r \left( \mathbb {R} \right)} : = \left\Vert {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\Vert _{L_\xi ^{r^{\prime }} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1}{2}} , \frac{1}{r} + \frac{1}{{r^{\prime }}} = 1 \] . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ \[ \frac{{2j - 1}}{{2r^{\prime }}} \] . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < \[ \frac{{2j - 1}}{{2r^{\prime }}} \] . The results for r = 2 - so far in the literature only if j = 1 (mKdV) or j = 2 - can be combined with the higher order conservation laws for the mKdV equation to obtain global well-posedness of the jth equation in H s(ℝ) for s ≥ \[ \frac{{j + 1}}{2} \] , if j is odd, and for s ≥ \[ \frac{j}{2} \] , if j is even. - The Cauchy problem for the jth equation in the KdV hierarchy with data in \[ \hat{H}_s^r \left( \mathbb {R} \right) \] cannot be solved by Picard iteration, if r > \[ \frac{{2j}}{{2j - 1}} \] , independent of the size of s ∈ ℝ. Especially for j ≥ 2 we have C 2-ill-posedness in H s(ℝ). With similar arguments as used before in the mKdV context it is shown that this problem is locally well-posed in \[ \hat{H}_s^r \left( \mathbb {R} \right) \] , if 1 < r ≤ \[ \frac{{2j}}{{2j - 1}} \] and \[ s > j - \frac{3}{2} - \frac{1}{{2j}} + \frac{{2j - 1}}{{2r^{\prime }}} \] . For KdV itself the lower bound on s is pushed further down to \[ s > max\left( { - \frac{1}{2} - \frac{1}{{2r^{\prime }}} - \frac{1}{4} - \frac{{11}}{{8r^{\prime }}}} \right) \] , where r ∈ (1,2). These results rely on the contraction mapping principle, and the flow map is real analytic.
LA - eng
KW - mKdV and KdV hierarchies; Cauchy problem; Local and global well-posedness; Generalized Fourier restriction norm method; local and global well-posedness; generalized Fourier restriction norm method
UR - http://eudml.org/doc/269252
ER -

References

top
  1. [1] Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., 1978, 61, 1–30 http://dx.doi.org/10.1007/BF01609465 Zbl0428.35067
  2. [2] Avramidi I., Schimming R., A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., 2000, 219, 45–64 http://dx.doi.org/10.1002/1522-2616(200011)219:1<45::AID-MANA45>3.0.CO;2-S Zbl0984.37084
  3. [3] Banica V., Vega L., On the Dirac delta as initial condition for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25, 697–711 http://dx.doi.org/10.1016/j.anihpc.2007.03.007 Zbl1147.35092
  4. [4] Cazenave T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003 
  5. [5] Cazenave T., Vega L., Vilela M.C., A note on the nonlinear Schrödinger equation in weak L p spaces, Commun. Contemp. Math., 2001, 3, 153–162 http://dx.doi.org/10.1142/S0219199701000317 Zbl0991.35084
  6. [6] Chern S.S., Peng C.K., Lie groups and KdV equations, Manuscripta Math., 1979, 28, 207–217 http://dx.doi.org/10.1007/BF01647972 Zbl0408.35074
  7. [7] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 2003, 125, 1235–1293 http://dx.doi.org/10.1353/ajm.2003.0040 Zbl1048.35101
  8. [8] Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal., 2001, 179, 409–425 http://dx.doi.org/10.1006/jfan.2000.3687 Zbl0974.47025
  9. [9] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 , J. Amer. Math. Soc., 2003, 16, 705–749 http://dx.doi.org/10.1090/S0894-0347-03-00421-1 
  10. [10] Fefferman C., Inequalities for strongly singular convolution operators, Acta Math., 1970, 124, 9–36 http://dx.doi.org/10.1007/BF02394567 Zbl0188.42601
  11. [11] Foschi D., Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2005, 2, 1–24 http://dx.doi.org/10.1142/S0219891605000361 Zbl1071.35025
  12. [12] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Korteweg-deVries equation and generalization, VI, Methods for exact solution, Comm. Pure Appl. Math., 1974, 27, 97–133 http://dx.doi.org/10.1002/cpa.3160270108 Zbl0291.35012
  13. [13] Gardner C.S., Korteweg-de Vries equation and generalizations, IV, The Korteweg-de Vries equation as a Hamiltonian system, J. Mathematical Phys., 1971, 12, 1548–1551 http://dx.doi.org/10.1063/1.1665772 Zbl0283.35021
  14. [14] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy Problem for the Zakharov System, J. Funct. Anal., 1997, 151, 384–436 http://dx.doi.org/10.1006/jfan.1997.3148 Zbl0894.35108
  15. [15] Grünrock A., An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004, 61, 3287–3308 http://dx.doi.org/10.1155/S1073792804140981 Zbl1072.35161
  16. [16] Grünrock A., Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005, 41, 2525–2558 http://dx.doi.org/10.1155/IMRN.2005.2525 Zbl1088.35063
  17. [17] Grünrock A., Herr S., Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 2008, 39, 1890–1920 http://dx.doi.org/10.1137/070689139 Zbl1156.35471
  18. [18] Grünrock A., Vega L., Local well-posedness for the modified KdV equation in almost critical H s r ^ -spaces, Trans. Amer. Math. Soc., 2009, 361, 5681–5694 http://dx.doi.org/10.1090/S0002-9947-09-04611-X Zbl1182.35197
  19. [19] Hörmander L., The analysis of linear partial differential operators, II, Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 257, Springer-Verlag, Berlin, 1983 
  20. [20] Kenig C.E., Ponce G., Vega L., Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J., 1991, 40, 33–69 http://dx.doi.org/10.1512/iumj.1991.40.40003 Zbl0738.35022
  21. [21] Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 1993, 46, 527–620 http://dx.doi.org/10.1002/cpa.3160460405 Zbl0808.35128
  22. [22] Kenig C.E., Ponce G., Vega L., On the hierarchy of the generalized KdV equations, In: Ercolani N.M., Gabitov I.R., Levermore C.D., Serre D. (Eds.), Singular limits of dispersive waves, Proceedings of the NATO Advanced Research Workshop (École Normale Supérieure, Lyon, July 8–12, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 1994, 320, 347–356 Zbl0849.35121
  23. [23] Kenig C.E., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 1994, 122, 157–166 http://dx.doi.org/10.2307/2160855 Zbl0810.35122
  24. [24] Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 1996, 9, 573–603 http://dx.doi.org/10.1090/S0894-0347-96-00200-7 Zbl0848.35114
  25. [25] Kenig C.E., Ponce G., Vega L., Quadratic forms for the 1 - D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 1996, 348, 3323–3353 http://dx.doi.org/10.1090/S0002-9947-96-01645-5 Zbl0862.35111
  26. [26] Kenig C.E., Ponce G., Vega L., On the illposedness of some canonical dispersive equations, Duke Math. J., 2001, 106, 617–633 http://dx.doi.org/10.1215/S0012-7094-01-10638-8 Zbl1034.35145
  27. [27] Koch H., Tzvetkov N., On the local well-posedness of the Benjamin-Ono equation in H s(ℝ), Int. Math. Res. Not., 2003, 26, 1449–1464 http://dx.doi.org/10.1155/S1073792803211260 Zbl1039.35106
  28. [28] Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries equation and generalizations, V, Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 1970, 11, 952–960 http://dx.doi.org/10.1063/1.1665232 Zbl0283.35022
  29. [29] Kwon S., On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map, J. Differential Equations, 2008, 245, 2627–2659 http://dx.doi.org/10.1016/j.jde.2008.03.020 Zbl1153.35067
  30. [30] Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations, 2008, 01, 15 pp. Zbl1133.35085
  31. [31] Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 1968, 21, 467–490 http://dx.doi.org/10.1002/cpa.3160210503 Zbl0162.41103
  32. [32] Lax P.D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 1975, 28, 141–188 Zbl0295.35004
  33. [33] Lax P.D., Almost periodic solutions of the KdV equation, SIAM Rev., 1976, 18, 351–375 http://dx.doi.org/10.1137/1018074 Zbl0329.35015
  34. [34] Lax P.D., Outline of a theory of the KdV equation, In: Ruggeri T. (Ed.), Recent mathematical methods in nonlinear wave propagation, Lecture Notes in Mathematics, 1640, Springer, Berlin, 1996 http://dx.doi.org/10.1007/BFb0093707 
  35. [35] Linares F., A higher order modified Korteweg-de Vries equation, Mat. Apl. Comput., 1995, 14, 253–267 Zbl0842.35105
  36. [36] Matsuno Y., Bilinear transformation method, Academic Press, Inc., Orlando, FL, 1984 Zbl0552.35001
  37. [37] Miura R.M., Korteweg-de Vries equation and generalizations, I, A remarkable explicit nonlinear transformation., J. Math. Phys., 1968, 9, 1202–1204 http://dx.doi.org/10.1063/1.1664700 Zbl0283.35018
  38. [38] Miura R.M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and generalizations, II, Existence of conservation laws and constants of motion, J. Math. Phys., 1968, 9, 1204–1209 http://dx.doi.org/10.1063/1.1664701 Zbl0283.35019
  39. [39] Molinet L., Saut J.-C., Tzvetkov N., Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 2001, 33, 982–988 http://dx.doi.org/10.1137/S0036141001385307 Zbl0999.35085
  40. [40] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18, 1212–1215 http://dx.doi.org/10.1063/1.523393 Zbl0348.35024
  41. [41] Ovcharov E., Global regularity of nonlinear dispersive equations and Strichartz estimates, PhD thesis, University of Edinburgh, Edinburgh, UK, 2009 
  42. [42] Perelman G., Vega L., Self-similar planar curves related to modified Korteweg-de Vries equation, J. Differential Equations, 2007, 235, 56–73 http://dx.doi.org/10.1016/j.jde.2006.12.018 Zbl1124.35076
  43. [43] Pilod D., On the Cauchy problem for higher-order nonlinear dispersive equations, J. Differential Equations, 2008, 245, 2055–2077 http://dx.doi.org/10.1016/j.jde.2008.07.017 Zbl1152.35017
  44. [44] Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations, 1993, 102, 360–381 http://dx.doi.org/10.1006/jdeq.1993.1034 Zbl0796.35148
  45. [45] Saut J.-C., Quelques generalisations de l’equation de Korteweg - de Vries, II, J. Differential Equations, 1979, 33, 320–335 (in French) http://dx.doi.org/10.1016/0022-0396(79)90068-8 
  46. [46] Sjölin P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 1987, 55, 699–715 http://dx.doi.org/10.1215/S0012-7094-87-05535-9 Zbl0631.42010
  47. [47] Taggart R.J., Inhomogeneous Strichartz estimates, preprint available at arXiv:0802.4120 
  48. [48] Vargas A., Vega L., Global wellposedness for 1D nonlinear Schrödinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. (9), 2001, 80, 1029–1044 http://dx.doi.org/10.1016/S0021-7824(01)01224-7 Zbl1027.35134
  49. [49] Vilela M.C., Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 2007, 359, 2123–2136 http://dx.doi.org/10.1090/S0002-9947-06-04099-2 Zbl1196.35074
  50. [50] Zheng Y.K., Chan W.L., Gauge transformation and the higher order Korteweg-de Vries equation, J. Math. Phys., 1988, 29, 308–314 http://dx.doi.org/10.1063/1.528068 Zbl0695.35186

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.