The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let A be an invertible 3 × 3 complex matrix. It is shown that there is a 3 × 3 permutation matrix P such that the product PA has at least two distinct eigenvalues. The nilpotent complex n × n matrices A for which the products PA with all symmetric matrices P have a single spectrum are determined. It is shown that for a n × n complex matrix [...] there exists a permutation matrix P such that the product PA has at least two distinct eigenvalues.
Let A be an invertible 3 × 3 complex matrix. It is shown that there is a 3 × 3 permutation matrix P such that the product PA has at least two distinct eigenvalues. The nilpotent complex n × n matrices A for which the products PA with all symmetric matrices P have a single spectrum are determined. It is shown that for a n × n complex matrix [...] there exists a permutation matrix P such that the product PA has at least two distinct eigenvalues.
Download Results (CSV)