The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study a model of motion of a passive tracer particle in a turbulent flow that is strongly mixing in time variable. In [8] we have shown that there exists a probability measure equivalent to the underlying physical probability under which the quasi-Lagrangian velocity process, i.e. the velocity of the flow observed from the vintage point of the moving particle, is stationary and ergodic. As a consequence, we proved the existence of the mean of the quasi-Lagrangian velocity, the so-called Stokes...
A sequence of random elements is called strongly tight if for an arbitrary there exists a compact set such that . For the Polish space valued sequences of random elements we show that almost sure convergence of as well as weak convergence of randomly indexed sequence assure strong tightness of . For bounded Banach space valued asymptotic martingales strong tightness also turns out to the sufficient condition of convergence. A sequence of r.e. is said to converge essentially with...
Download Results (CSV)