The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites
We study a model of motion of a passive tracer particle in a turbulent flow that is strongly mixing in time variable. In [8] we have shown that there exists a probability measure equivalent to the underlying physical probability under which the quasi-Lagrangian velocity process, i.e. the velocity of the flow observed from the vintage point of the moving particle, is stationary and ergodic. As a consequence, we proved the existence of the mean of the quasi-Lagrangian velocity, the so-called Stokes...
A sequence of random elements is called strongly tight if for an arbitrary there exists a compact set such that . For the Polish space valued sequences of random elements we show that almost sure convergence of as well as weak convergence of randomly indexed sequence assure strong tightness of . For bounded Banach space valued asymptotic martingales strong tightness also turns out to the sufficient condition of convergence. A sequence of r.e. is said to converge essentially with...
Page 1