The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites

Tomasz Komorowski; Grzegorz Krupa

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 2, page 263-285
  • ISSN: 0246-0203

How to cite

top

Komorowski, Tomasz, and Krupa, Grzegorz. "The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites." Annales de l'I.H.P. Probabilités et statistiques 39.2 (2003): 263-285. <http://eudml.org/doc/77762>.

@article{Komorowski2003,
author = {Komorowski, Tomasz, Krupa, Grzegorz},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random environment; law of large numbers},
language = {eng},
number = {2},
pages = {263-285},
publisher = {Elsevier},
title = {The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites},
url = {http://eudml.org/doc/77762},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Komorowski, Tomasz
AU - Krupa, Grzegorz
TI - The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 2
SP - 263
EP - 285
LA - eng
KW - random walk in random environment; law of large numbers
UR - http://eudml.org/doc/77762
ER -

References

top
  1. [1] S. Alili, Asymptotic behaviour for random walks in random environments, J. Appl. Probab.36 (1999) 334-349. Zbl0946.60046MR1724844
  2. [2] N. Alon, J. Spencer, P. Erdös, The Probabilistic Method, Wiley, New York, 1992. Zbl0767.05001MR1140703
  3. [3] D. Boivin, Weak convergence for reversible random walks in a random environment, Ann. Probab.21 (1993) 1427-1440. Zbl0783.60067MR1235423
  4. [4] J. Bricmont, A. Kupiainen, Random walks in asymmetric random environments, Comm. Math. Phys.142 (1991) 345-420. Zbl0734.60112MR1137068
  5. [5] R. Durrett, Probability Theory and Examples, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1991. Zbl0709.60002MR1068527
  6. [6] S.M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys40 (1985) 73-145. Zbl0615.60063MR786087
  7. [7] A. Lasota, M. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, 1985. Zbl0606.58002MR832868
  8. [8] G.F. Lawler, Weak convergence of a random walk in a random environment, Comm. Math. Phys.87 (1982) 81-87. Zbl0502.60056MR680649
  9. [9] S.A. Molchanov, Lectures on Random Media. Ecole d'été de probabilités de St. Flour XXII, Lecture Notes in Math., 1581, Springer, Berlin, 1994, pp. 242–411. Zbl0814.60093
  10. [10] S. Olla, Homogenization of Diffusion Processes in Random Fields, Manuscript of Centre de Mathématiques Appliquées, 1994. 
  11. [11] G.C. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in: Fritz J., Lebowitz J.L. (Eds.), Random Fields Coll., Math. Soc. Janos Bolyai., 27, North Holland, Amsterdam, 1982, pp. 835-873. Zbl0499.60059MR712714
  12. [12] A.Yu. Rozanov, Stationary Random Processes, Holden-Day, 1969. Zbl0152.16302MR214134
  13. [13] L. Shen, A law of large numbers and a central limit theorem for biased random motions in random environment, Preprint, 2000. 
  14. [14] A.V. Skorokhod, σ-algebras of events on probability spaces. Similarity and factorization, Theory Probab. Appl.36 (1990) 63-73. Zbl0745.60004
  15. [15] A.S. Sznitman, An effective criterion for ballistic behavior of random walks in random environment, Preprint, 2000. MR1902189
  16. [16] A.S. Sznitman, Slowdown estimates and central limit theorem for random walks in random environment, J. Eur. Math. Soc.2 (2000) 93-143. Zbl0976.60097MR1763302
  17. [17] A.S. Sznitman, Lectures on random motions in random media, 2000, Preprint available at http://www.math.ethz.ch/~sznitman/preprint.shtml. 
  18. [18] A.S. Sznitman, M. Zerner, A law of large numbers for random walks in random environment, Ann. Probab.27 (1999) 1851-1869. Zbl0965.60100MR1742891
  19. [19] O. Zeitouni, Lecture notes on random walks in random environments, 2001, Preprint available at , http://www-ee.technion.ac.il/zeitouni/ps/notes1.ps. MR2071631
  20. [20] M. Zerner, Lyapunov exponents and quenched large deviation for multidimensional random walk in random environment, Ann. Probab.26 (1998) 1446-1476. Zbl0937.60095MR1675027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.