The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites
Tomasz Komorowski; Grzegorz Krupa
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 2, page 263-285
- ISSN: 0246-0203
Access Full Article
topHow to cite
topKomorowski, Tomasz, and Krupa, Grzegorz. "The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites." Annales de l'I.H.P. Probabilités et statistiques 39.2 (2003): 263-285. <http://eudml.org/doc/77762>.
@article{Komorowski2003,
author = {Komorowski, Tomasz, Krupa, Grzegorz},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random environment; law of large numbers},
language = {eng},
number = {2},
pages = {263-285},
publisher = {Elsevier},
title = {The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites},
url = {http://eudml.org/doc/77762},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Komorowski, Tomasz
AU - Krupa, Grzegorz
TI - The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 2
SP - 263
EP - 285
LA - eng
KW - random walk in random environment; law of large numbers
UR - http://eudml.org/doc/77762
ER -
References
top- [1] S. Alili, Asymptotic behaviour for random walks in random environments, J. Appl. Probab.36 (1999) 334-349. Zbl0946.60046MR1724844
- [2] N. Alon, J. Spencer, P. Erdös, The Probabilistic Method, Wiley, New York, 1992. Zbl0767.05001MR1140703
- [3] D. Boivin, Weak convergence for reversible random walks in a random environment, Ann. Probab.21 (1993) 1427-1440. Zbl0783.60067MR1235423
- [4] J. Bricmont, A. Kupiainen, Random walks in asymmetric random environments, Comm. Math. Phys.142 (1991) 345-420. Zbl0734.60112MR1137068
- [5] R. Durrett, Probability Theory and Examples, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1991. Zbl0709.60002MR1068527
- [6] S.M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys40 (1985) 73-145. Zbl0615.60063MR786087
- [7] A. Lasota, M. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, 1985. Zbl0606.58002MR832868
- [8] G.F. Lawler, Weak convergence of a random walk in a random environment, Comm. Math. Phys.87 (1982) 81-87. Zbl0502.60056MR680649
- [9] S.A. Molchanov, Lectures on Random Media. Ecole d'été de probabilités de St. Flour XXII, Lecture Notes in Math., 1581, Springer, Berlin, 1994, pp. 242–411. Zbl0814.60093
- [10] S. Olla, Homogenization of Diffusion Processes in Random Fields, Manuscript of Centre de Mathématiques Appliquées, 1994.
- [11] G.C. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in: Fritz J., Lebowitz J.L. (Eds.), Random Fields Coll., Math. Soc. Janos Bolyai., 27, North Holland, Amsterdam, 1982, pp. 835-873. Zbl0499.60059MR712714
- [12] A.Yu. Rozanov, Stationary Random Processes, Holden-Day, 1969. Zbl0152.16302MR214134
- [13] L. Shen, A law of large numbers and a central limit theorem for biased random motions in random environment, Preprint, 2000.
- [14] A.V. Skorokhod, σ-algebras of events on probability spaces. Similarity and factorization, Theory Probab. Appl.36 (1990) 63-73. Zbl0745.60004
- [15] A.S. Sznitman, An effective criterion for ballistic behavior of random walks in random environment, Preprint, 2000. MR1902189
- [16] A.S. Sznitman, Slowdown estimates and central limit theorem for random walks in random environment, J. Eur. Math. Soc.2 (2000) 93-143. Zbl0976.60097MR1763302
- [17] A.S. Sznitman, Lectures on random motions in random media, 2000, Preprint available at http://www.math.ethz.ch/~sznitman/preprint.shtml.
- [18] A.S. Sznitman, M. Zerner, A law of large numbers for random walks in random environment, Ann. Probab.27 (1999) 1851-1869. Zbl0965.60100MR1742891
- [19] O. Zeitouni, Lecture notes on random walks in random environments, 2001, Preprint available at , http://www-ee.technion.ac.il/zeitouni/ps/notes1.ps. MR2071631
- [20] M. Zerner, Lyapunov exponents and quenched large deviation for multidimensional random walk in random environment, Ann. Probab.26 (1998) 1446-1476. Zbl0937.60095MR1675027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.