La théorie des valuations née des travaux des géomètres et arithméticiens du XIX siècle, fit une apparition tardive et encore peu connue au XX siècle en algèbre différentielle. Dans cet article, à travers les contributions de nombreux auteurs, nous présentons une synthèse des divers apports de la théorie des valuations à l’étude des équations différentielles. Nous insistons sur le caractère unificateur de la théorie des valuations en illustrant comment elles permettent de mettre en parallèle des...
In this paper, we consider the natural complex Hamiltonian systems with homogeneous potential , , of degree . The known results of Morales and Ramis give necessary conditions for the complete integrability of such systems. These conditions are expressed in terms of the eigenvalues of the Hessian matrix calculated at a non-zero point , such that . The main aim of this paper is to show that there are other obstructions for the integrability which appear if the matrix is not diagonalizable....
We show how using the differential Galois theory one can find effectively necessary conditions for the integrability of Hamiltonian systems with homogeneous potentials.
Download Results (CSV)